Italian IMO Team Selection Test 2003

First Day - Pisa, May

- 1. Find all triples (a,b,p) with a,b positive integers and p a prime number such that $2^a + p^b = 19^a$.
- 2. Let $B \neq A$ be a point on the tangent to circle S_1 through point A on the circle. A point C outside the circle is chosen so that segment AC intersects the circle in two distinct points. Let S_2 be the circle tangent to AC at C and to S_1 at some point D, where D and B are on the opposite sides of the line AC. Let O be the circumcenter of triangle BCD. Show that O lies on the circumcircle of triangle ABC.
- 3. Determine all functions $f : \mathbb{R} \to \mathbb{R}$ that satisfy

f(f(x) + y) = 2x + f(f(y) - x) for all real x, y.

Second Day – Pisa, May

- 4. The incircle of a triangle *ABC* touches the sides *AB*, *BC*, *CA* at points *D*, *E*, *F*, respectively. The line through *A* parallel to *DF* meets the line through *C* parallel to *EF* at *G*.
 - (a) Prove that the quadrilateral AICG is cyclic.
 - (b) Prove that the points B, I, G are collinear.
- 5. For *n* an odd positive integer, the unit squares of an $n \times n$ chessboard are colored alternately black and white, with the four corners colored black. A *tromino* is an *L*-shape formed by three connected unit squares.
 - (a) For which values of *n* is it possible to cover all the black squares with nonoverlapping trominos lying entirely on the chessboard?
 - (b) When it is possible, find the minimum number of trominos needed.
- 6. Let p(x) be a polynomial with integer coefficients and let *n* be an integer. Suppose that there is a positive integer *k* for which $f^{(k)}(n) = n$, where $f^{(k)}(x)$ is the polynomial obtained as the composition of *k* polynomials *f*. Prove that p(p(n)) = n.

