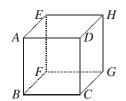
Italian IMO Team Selection Test 2004

First Day - Pisa

1. At the vertices *A*,*B*,*C*,*D*,*E*,*F*,*G*, *H* of a cube, 2001,2002,2003,2004, 2005,2008,2007 and 2006 stones respectively are placed. It is allowed to move a stone from a vertex to each of its three neighbors, or to



move a stone to a vertex from each of its three neighbors. Which of the following arrangements of stones at A, B, \ldots, H can be obtained?

- (a) 2001,2002,2003,2004,2006,2007,2008,2005;
- (b) 2002,2003,2004,2001,2006,2005,2008,2007;
- (c) 2004,2002,2003,2001,2005,2008,2007,2006.
- 2. Let $\mathscr{P}_0 = A_0A_1...A_{n-1}$ be a convex polygon such that $A_iA_{i+1} = 2^{[i/2]}$ for i = 0, 1, ..., n-1 (where $A_n = A_0$). Define the sequence of polygons $P_k = A_0^kA_1^k...A_{n-1}^k$ as follows: A_i^1 is symmetric to A_i with respect to A_0, A_i^2 is symmetric to A_i^1 with respect to A_1^2 , A_i^3 is symmetric to A_i^2 with respect to A_2^2 and so on. Find the values of *n* for which infinitely many polygons \mathscr{P}_k coincide with \mathscr{P}_0 .
- 3. Find all functions $f : \mathbb{N} \to \mathbb{N}$ such that for all $m, n \in \mathbb{N}$,

$$(2^{m}+1)f(n)f(2^{m}n) = 2^{m}f(n)^{2} + f(2^{m}n)^{2} + (2^{m}-1)^{2}n.$$

Second Day - Pisa

- 4. Two circles γ₁ and γ₂ intersect at *A* and *B*. A line *r* through *B* meets γ₁ at *C* and γ₂ at *D* so that *B* is between *C* and *D*. Let *s* be the line parallel to *AD* which is tangent to γ₁ at *E*, at the smaller distance from *AD*. Line *EA* meets γ₂ in *F*. Let *t* be the tangent to γ₂ at *F*.
 - (a) Prove that *t* is parallel to *AC*.
 - (b) Prove that lines *r*,*s*,*t* are concurrent.
- 5. A positive integer *n* is said to be a *perfect power* if $n = a^b$ for some integers *a*, *b* with b > 1.
 - (a) Find 2004 perfect powers which form an arithmetic progression.
 - (b) Prove that perfect powers cannot form an infinite arithmetic progression.
- 6. Given real numbers x_i, y_i (i = 1, 2, ..., n), let *A* be the $n \times n$ matrix given by $a_{ij} = 1$ if $x_i \ge y_j$ and $a_{ij} = 0$ otherwise. Suppose *B* is a $n \times n$ matrix whose entries are 0 and 1 such that the sum of entries in any row or column of *B* equals the sum of entries in the corresponding row or column of *A*. Prove that B = A.

1

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com