Italian IMO Team Selection Test 2006

First Day – Pisa, May 20

- 1. We consider a string S of 99 letters, 66 of which are A and 33 are B. We call S good if, for each initial substring of S (i.e. consisting of the first n letters, $1 \le n \le 99$), the number of different words that can be obtained by permuting the letters of the substring is odd. How many good strings are there? Which strings are good?
- 2. In a triangle *ABC*, *H* is the orthocenter and *L*,*M*,*N* the midpoints of the sides *AB*,*BC*,*CA*, respectively. Prove that

$$HL^2 + HM^2 + HN^2 < AL^2 + BM^2 + CN^2$$

if and only if *ABC* is acite-angled.

3. Find all functions $f : \mathbb{Z} \to \mathbb{Z}$ such that for all integers m, n

$$f(m-n+f(n)) = f(m)+f(n).$$

Second Day – Pisa, May 21

- 4. Circles γ_1 and γ_2 intersect at points Q and R and internally touch a circle γ at A_1 and A_2 respectively. Let P be an arbitrary point on γ . Segments PA_1 and PA_2 meet γ_1 and γ_2 again at B_1 and B_2 , respectively.
 - (a) Prove that the tangent to γ_1 at B_1 and the tangent to γ_2 at B_2 are parallel.
 - (b) Prove that B_1B_2 is a common tangent of γ_1 and γ_2 if and only if *P* lies on *QR*.
- 5. For each positive integer *n*, let A_n denote the set of positive integers $a \le n$ such that $n \mid a^n + 1$.
 - (a) Find all *n* for which A_n is nonempty.
 - (b) Find all *n* for which $|A_n|$ is even and nonzero.
 - (c) Is there an *n* with $|A_n| = 130$?
- 6. Let p(x) be a complex polynomial with $p(0) \neq 0$. Show that there exists a polynomial with positive real coefficients divisible by p(x) if and only if p(x) has no positive real root.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com