First Round September 10 – December 10, 2007

1. Solve in real numbers x, y, z the system of equations

$$\begin{cases} x^5 = 5y^3 - 4z \\ y^5 = 5z^3 - 4x \\ z^5 = 5x^3 - 4y \end{cases}$$

- 2. Inside a convex angle with vertex *P* is given a point *A*. Points *X* and *Y* lie on different rays of the angle so that PX = PY and the sum AX + AY is minimal. Prove that $\angle XAP = \angle YAP$.
- 3. A sequence (a_n) of integers is defined by $a_1 = 1$, $a_2 = 2$ and

$$a_n = 3a_{n-1} + 5a_{n-2}$$
 for $n = 3, 4, 5, ...$

Does there exist an integer $k \ge 2$ for which a_k divides $a_{k+1}a_{k+2}$.

- 4. Let n ≥ 1 be a given integer. For each nonempty subset A of {1,2,...,n} define the number w(A) as follows: If a₁ > a₂ > ··· > a_k are the elements of A, then w(A) = a₁ a₂ + a₃ ··· + (-1)^{k+1}a_k. Find the sum of the numbers w(A) over all 2ⁿ 1 possible subsets A.
- 5. Find all triples (p,q,r) of prime numbers for which

$$pq+qr+rp$$
 and $p^3+q^3+r^3-2pqr$

are divisible by p + q + r.

- 6. Find all polynomials W(x) with real coefficients such that $W(x^2)W(x^3) = W(x)^5$ holds for every real number *x*.
- 7. In a set of *n* people, each of its $2^n 1$ nonempty subsets is called a *company*. Each company should elect a leader, according to the following rule: If a company *C* is the union $A \cup B$ of two companies *A* and *B*, then the leader of *C* is also the leader of at least one of the companies *A* and *B*. Find the number of possible choices of leaders.
- 8. The base of a pyramid *SABCD* is a convex quadrilateral *ABCD*. A sphere is inscribed in the pyramid and touches the base *ABCD* at point *P*. Prove that $\angle APB + \angle CPD = 180^{\circ}$.
- 9. Determine the smallest real number *a* having the following property: For any real numbers $x, y, z \ge a$ satisfying x + y + z = 3, it holds that $x^3 + y^3 + z^3 \ge 3$.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com 10. A prime number p is given. A sequence of positive integers a_1, a_2, \ldots satisfies the relation

 $a_{n+1} = a_n + p\left[\sqrt[p]{a_n}\right]$ for n = 1, 2, 3...

Show that there is a term in this sequence which is the *p*-th power of an integer.

11. Points *P*₁,*P*₂,*P*₃,*P*₄,*P*₅,*P*₆,*P*₇ respectively lie on the sides *BC*, *CA*, *AB*, *BC*, *AB*, *AB*, *BC*, *AB*, *AB*, *BC*, *AB*, *AB*, *AB*, *AB*,

$$\angle P_1 P_2 C = \angle A P_2 P_3 = \angle P_3 P_4 B = \angle C P_4 P_5 = \angle P_5 P_6 A = \angle B P_6 P_7 = 60^\circ.$$

Prove that $P_1 \equiv P_7$.

12. Let be given an integer $m \ge 2$. Find the smallest integer $n \ge m$ with the property that, for every partition of the set $\{m, m+1, \ldots, n\}$ into two subsets, one of the subsets contains three numbers a, b, c (not necessarily distinct) with ab = c.

