44-th Polish Mathematical Olympiad 1992/93

First Round September – December 1992

1. Solve the following equation in real numbers:

$$\frac{(x^2-1)(|x|+1)}{x+\mathrm{sgn}x} = [x+1].$$

2. Let $n \ge 3$ be integer. Solve the system of equations:

$$\begin{array}{rcl}
\tan x_1 + 3\cot x_1 & = & 2\tan x_2, \\
\tan x_2 + 3\cot x_2 & = & 2\tan x_3, \\
& \dots & \dots & \dots \\
\tan x_n + 3\cot x_n & = & 2\tan x_1.
\end{array}$$

3. Let ABCDEF be a centrally symmetric hexagon. The lines AB and EF meet at A', the lines BC and AF meet at B', and the lines AB and CD meet at C'. Prove that

$$AB \cdot BC \cdot CD = AA' \cdot BB' \cdot CC'$$

4. Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that for all real x, y,

$$f(x+y) - f(x-y) = f(x)f(y).$$

- 5. Let *A* and *C* be distinct points in the plane. For every point *B* one constructs squares *ABKL* and *BCMN* outside the triangle *ABC*. Prove that the lines *LM* pass through a fixed point as *B* varies in the same halfplane determined by *AC*.
- 6. The sequence (x_n) is defined by $x_0 = 1992$ and

$$x_n = -\frac{1992}{n} \sum_{k=0}^{n-1} x_k$$

for each
$$n \ge 1$$
. Calculate $\sum_{n=0}^{1992} 2^n x_n$.

- 7. Consider the points $A_0(0,0,0)$, $A_1(1,0,0)$, $A_2(0,1,0)$ and $A_3(0,0,1)$ in space. Let the point P_{ij} (i,j=0,1,2,3) be defined by $\overrightarrow{A_0P_{ij}} = \overrightarrow{A_iA_j}$. Find the volume of the convex hull of points P_{ij} .
- 8. Given a positive integer n, determine the maximum possible value of the sum of natural numbers k_1, k_2, \ldots, k_n satisfying

$$k_1^3 + k_2^3 + \dots + k_n^3 \le 7n.$$

9. Let a,b,c be read numbers. Prove the inequality

$$\begin{array}{ll} & (a^2+b^2-c^2)(b^2+c^2-a^2)(c^2+a^2-b^2) & \leq \\ \leq & (a+b-c)^2(b+c-a)^2(c+a-b)^2. \end{array}$$

- 10. Let $\mathscr C$ be a cube and let $f:\mathscr C\to\mathscr C$ be a surjection such that $|PQ|\geq |f(P)f(Q)|$ for all $P,Q\in\mathscr C$. Prove that f is an isometry.
- 11. Six pawns are randomly placed on an $n \times n$ chessboard. Let p_n be the probability that at least two of the pawns lie in the same row or column. Find $\lim_{n\to\infty} np_n$.
- 12. Prove that the polynomial $x^n + 4$ is expressible as the product of two non-constant polynomials with integer coefficients if and only if $4 \mid n$.

