45-th Polish Mathematical Olympiad 1993/94

Second Round February 1994

First Day

1. Find all real polynomials P(x) of degree 5 such that $(x-1)^3 | P(x) + 1$ and $(x+1)^3 | P(x) - 1$.

2. Let a_1, \ldots, a_n be positive real numbers such that $\sum_{i=1}^n a_i = \prod_{i=1}^n a_i$, and let b_1, \ldots, b_n be positive real numbers such that $a_i \le b_i$ for all *i*.

Prove that $\sum_{i=1}^{n} b_i \leq \prod_{i=1}^{n} b_i$

3. A plane passing through tht center of a cube intersects the cube in a cyclic hexagon. Show that this hexagon is regular.

Second Day

- 4. Each vertex of a cube is assigned 1 or -1. Each face is assigned the product of the four numbers at its vertices. Determine all possible values that can be obtained as the sum of all the 14 assigned numbers.
- 5. The incircle *o* of a triangle *ABC* is tangent to the sides *AB* and *BC* at *P* and *Q* respectively. The angle bisector at *A* meets *PQ* at point *S*. Prove $\angle ASC = 90^{\circ}$.
- 6. Let *p* be a prime number. Prove that there exists $n \in \mathbb{Z}$ such that $p \mid n^2 n + 3$ if and only if there exists $m \in \mathbb{Z}$ such that $p \mid m^2 m + 25$.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com

1