50-th Polish Mathematical Olympiad 1998/99

Second Round

February 26-27, 1999

First Day

- 1. Let $f: (0,1) \to \mathbb{R}$ be a function such that $f(1/n) = (-1)^n$ for all $n \in \mathbb{N}$. Prove that there are no increasing functions $g, h: (0,1) \to \mathbb{R}$ such that f = g h.
- 2. A cube of edge 2 with one of the corner unit cubes removed is called a *piece*. Prove that if a cube T of edge 2^n is divided into 2^{3n} unit cubes and one of the unit cubes is removed, then the rest can be cut into pieces.
- 3. Let *ABCD* be a cyclic quadrilateral and let *E* and *F* be the points on the sides *AB* and *CD* respectively such that AE : EB = CF : FD. Point *P* on the segment *EF* satisfies EP : PF = AB : CD. Prove that the ratio of the areas of $\triangle APD$ and $\triangle BPC$ does not depend on the choice of *E* and *F*.

Second Day

- 4. Let *P* be a point inside a triangle *ABC* such that $\angle PAB = \angle PCA$ and $\angle PAC = \angle PBA$. If $O \neq P$ is the circumcenter of $\triangle ABC$, prove that $\angle APO$ is right.
- 5. Let $S = \{1, 2, 3, 4, 5\}$. Find the number of functions $f : S \to S$ such that $f^{50}(x) = x$ for all $x \in S$.
- 6. Suppose that a_1, a_2, \ldots, a_n are integers such that

 $a_1 + 2^i a_2 + 3^i a_3 + \dots + n^i a_n = 0$ for $i = 1, 2, \dots, k-1$,

where $k \ge 2$ is a given integer. Prove that $a_1 + 2^k a_2 + 3^k a_3 + \dots + n^k a_n$ is divisible by k!.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com