43-rd Polish Mathematical Olympiad 1991/92

Third Round

First Day

- 1. Segments *AC* and *BD* intersecxt at *P* so that PA = PD and PB = PC. If *O* is the circumcenter of triangle *PAB*, prove that *OP* is perpendicular to *CD*.
- 2. Find all functions $f : \mathbb{Q}^+ \to \mathbb{Q}^+$ such that for all $x \in \mathbb{Q}^+$,

$$f(x+1) = f(x) + 1$$
 and $f(x^3) = f(x)^3$.

3. If a_1, a_2, \ldots, a_r are arbitrary real numbers, prove the inequality

$$\sum_{n=1}^{r} \sum_{m=1}^{r} \frac{a_m a_n}{m+n} \ge 0$$

Second Day

4. The sequence of functions $f_n : \mathbb{R} \to \mathbb{R}$ is defined by $f_0(x) = 8$ and

$$f_{n+1}(x) = \sqrt{x^2 + 6f_n(x)}$$
 for all *x*.

For every integer $n \ge 0$, solve the equation $f_n(x) = 2x$.

- 5. The base of a regular pyramid is a regular 2n-gon $A_1A_2...A_{2n}$. A sphere passing through the top vertex *S* intersects the lateral edge SA_i at B_i for i = 1, 2, ..., 2n. Prove that $\sum_{i=1}^{n} SB_{2i-1} = \sum_{i=1}^{n} SB_{2i}$.
- 6. Prove that for each positive integer k, $(k^3)!$ is divisible by $(k!)^{k^2+k+1}$.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com

1