Third Round April 24–25, 1998

First Day

1. Find all positive integers a, b, c, x, y, z with $a \ge b \ge c$ and $x \ge y \ge z$ which satisfy

$$a+b+c=xyz, \quad x+y+z=abc.$$

2. The Fibonacci sequence (F_n) is given by $F_0 = F_1 = 1$ and $F_{n+2} = F_{n+1} + F_n$ for $n \ge 0$. Find all pairs (k,m) of integers with $m > k \ge 0$ for which number 1 is a term of the sequence defined by

$$x_0 = \frac{F_k}{F_m}, \quad x_{n+1} = \begin{cases} \frac{2x_n - 1}{1 - x_n} & \text{for } x_n \neq 1, \\ 1 & \text{for } x_n \neq 1, \end{cases}$$
 $n = 0, 1, 2, \dots$

3. A convex pentagon *ABCDE* is the base of a pyramid *ABCDES*. A plane, not passing through any vertex of the pyramid, meets the edges *SA*, *SB*, *SC*, *SD*, *SE* in points *A'*, *B'*, *C'*, *D'*, *E'* respectively. Prove that the intersection points of the diagonals of the quadrilaterals *ABB'A'*, *BCC'B'*, *CDD'C'*, *DEE'D'*, *EAA'E'* are coplanar.

Second Day

- 4. Show that the sequence (a_n) defined by a_1 and $a_n = a_{n-1} + a_{[n/2]}$ for $n \ge 2$ contains infinitely many terms divisible by 7.
- 5. Points *D* and *E* lie on the side *AB* of a triangle *ABC* and satisfy

$$\frac{AD}{DB} \cdot \frac{AE}{EB} = \frac{AC^2}{CB^2}$$

Prove that $\angle ACD = \angle BCE$.

6. Consider unit squares in the plane whose vertices have integer coordinates. Let *S* be the chessboard consisting of all the unit squares lying entirely inside the circle $x^2 + y^2 \le 1998^2$. In every square of chessboard *S* number 1 is written. In each move, we may change the signs of all numbers in a row, column or diagonal of *S*. (A diagonal consists of the squares of *S* lying on a line which forms an angle of 45° with the axes.) Is it possible to have -1 in exactly one unit square of *S* after finitely many moves?

1

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com