Swiss IMO Team Selection Tests 2001

First Test May 4

- 1. The 2001×2001 trees in a park form a square grid. What is the largest number of trees that can be cut so that no tree stump can be seen from any other? (Each tree has zero width.)
- 2. If a, b, and c are the sides of a triangle, prove the inequality

$$\sqrt{a+b-c} + \sqrt{c+a-b} + \sqrt{b+c-a} \le \sqrt{a} + \sqrt{b} + \sqrt{c}.$$

When does equality occur?

- 3. In a convex pentagon every diagonal is parallel to one side. Show that the ratios between the lengths of diagonals and the sides parallel to them are equal and find their value.
- 4. For a natural number $n \ge 2$, consider all representations of n as a sum of its distinct divisors, $n = t_1 + t_2 + \cdots + t_k$, $t_i \mid n$. Two such representations differing only in order of the summands are considered the same (for example, 20 = 10+5+4+1 and 20 = 5+1+10+4). Let a(n) be the number of different representations of n in this form. Prove or disprove: There exists M such that $a(n) \le M$ for all $n \ge 2$.
- 5. Let $a_1 < a_2 < \cdots < a_n$ be a sequence of natural numbers such that for i < j the decimal representation of a_i does not occur as the leftmost digits of the decimal representation of a_j . (For example, 137 and 13729 cannot both occur in the sequence.) Prove that

$$\sum_{i=1}^{n} \frac{1}{a_i} \le 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{9}.$$

Second Test May 19

- 1. A function $f : [0,1] \to \mathbb{R}$ has the following properties:
 - (a) f(x) ≥ 0 for 0 < x < 1;
 (b) f(1) = 1;
 (c) f(x+y) ≥ f(x) + f(y) whenever x, y, x + y ∈ [0,1].
 Prove that f(x) ≤ 2x for all x ∈ [0,1].

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com

1

- 2. Let *ABC* be an acute-angled triangle with circumcenter *O*. The circle \mathscr{S} through *A*,*B*, and *O* intersects *AC* and *BC* again at points *P* and *Q* respectively. Prove that $CO \perp PQ$.
- 3. Find two smallest natural numbers n for which each of the fractions

$$\frac{68}{n+70}, \frac{69}{n+71}, \frac{70}{n+72}, \dots, \frac{133}{n+135}$$

is irreducible.

- 4. In Geneva there are 16 secret agents, each of whom is watching one or more other agents. It is known that if agent *A* is watching agent *B*, then *B* is not watching *A*. Moreover, any 10 agents can be ordered so that the first is watching the second, the second is watching the third, etc, the last is watching the first. Show that any 11 agents can also be so ordered.
- 5. Prove that every 1000-element subset M of the set $\{0, 1, \dots, 2001\}$ contains either a power of two or two distinct numbers whose sum is a number of two.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com