51-th Bulgarian Mathematical Olympiad 2002, IV Round

First Day, ? april 2002

1. Let $\{a_n\}_1^{\infty}$ be a sequence of real numbers, such that $a_{n+1} = \sqrt{a_n^2 + a_n - 1}$. Prove that $a_1 \notin (-2, 1)$.

Oleg Mushkarov, Nikolai Nikolov

2. Consider the orthogonal projections of the vertices *A*, *B* and *C* of triangle *ABC* on external bisectors of $\angle ACB$, $\angle BAC$ and $\angle ABC$, respectively. Prove that if *d* is the diameter of the circumcircle of the triangle, which is formed by the feet of the projections, while *r* and *p* are the inradius and the semi-perimetr of $\triangle ABC$, respectively, then $r^2 + p^2 = d^2$.

Alexander Ivanov

3. Given are n^2 points in the plane, such that no three of them are collinear, where $n \ge 4$ is a positive integer of the form 3k + 1. What is the minimal number of connecting segments among the points, such that for each *n*-plet of points we can find four points, which are all connected to each other?

Alexander Ivanov, Emil Kolev

Second day, ? april 2002

4. Let *I* be the incenter of a non-equilateral triangle *ABC* and *T*₁, *T*₂, *T*₃ be the tangency points of the incircle with the sides *BC*, *CA*, *AB*, respectivey. Prove that the orthocenter of $\triangle T_1T_2T_3$ lies on the line *OI*, where *O* is the circumcenter of $\triangle ABC$

Georgi Ganchev

5. Find all pairs (b,c) of positive integers, such that the sequence definited by

 $a_1 = b$, $a_2 = c$ and $a_{n+2} = |3a_{n+1} - 2a_n|$ for $n \ge 1$

has only finite number of composite terms.

Oleg Mushkarov, Nikolai Nikolov

6. Find the smallest number k, such that $\frac{\ell_a + \ell_b}{a+b} < k$ for all triangles with sides a and b and bisectors ℓ_a and ℓ_b to them, respectively.

Sava Grodzev, Svetlozar Doichev, Oleg Mushkarov, Nikolai Nikolov

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović IATEX and translation by Borislav Mirchev and Ercole Suppa www.imomath.com

1