Chinese IMO Team Selection Test 2008

Time: 4.5 hours each day.

First Day

- 1. Let *ABC* be a triangle such that AB > AC. Let *E* be the point of tangency of *BC* with the incircle of *ABC*. Let *D* be the second intersection point of the incircle with the segment *AE*. Point $F \in AE$ ($F \neq E$) satisfies CE = CF. The ray *CF* intersects *BD* at *G*. Prove that CF = FG.
- 2. The sequence (x_n) is defined by $x_1 = 2$, $x_2 = 12$, and $x_{n+2} = 6x_{n+1} x_n$, for $n \ge 1$. Let *p* be an odd prime number and let *q* be a prime divisor of x_p . Prove that if $q \notin \{2,3\}$ then $q \ge 2p 1$.
- 3. Suppose that every positive integer has been painted in one of the two colors. Prove that there exists an infinite sequence of positive integers $a_1 < a_2 < \cdots$ such that $a_1, \frac{a_1+a_2}{2}, a_2, \frac{a_2+a_3}{2}, a_3, \ldots$ is an infinite sequence of positive integers of the same color.

Second Day

- 4. Let n ≥ 4 be an integer. Consider all the subsets of G_n = {1,2,...,n} with at least two elements. Prove it is possible to arrange those subsets in a sequence P₁, P₂,..., P_{2ⁿ-n-1} such that |P_i ∩ P_{i+1}| = 2 for every i = 1,2,...,2ⁿ − n − 2.
- 5. Let *m*, *n* be two positive integers. Positive real numbers $a_{i,j}$ $(1 \le i \le n, 1 \le j \le m)$ are not all equal to zero. If

$$f = \frac{n\sum_{i=1}^{n} \left(\sum_{j=1}^{m} a_{ij}\right)^{2} + m\sum_{j=1}^{m} \left(\sum_{i=1}^{n} a_{ij}\right)^{2}}{\left(\sum_{i=1}^{n} \sum_{j=1}^{m} a_{ij}\right)^{2} + mn\sum_{i=1}^{n} \sum_{j=1}^{m} a_{ij}^{2}},$$

find the maximum and minimum of f.

- 6. Find the maximal constant *M* such that for arbitrary integer $n \ge 3$, there exists two sequences of positive real numbers a_1, \ldots, a_n and b_1, \ldots, b_n such that
 - (i) $\sum_{k=1}^{n} b_k = 1, 2b_k \ge b_{k-1} + b_{k+1}, k = 2, 3, \dots, n-1;$
 - (ii) $a_k^2 \le 1 + \sum_{i=1}^k a_i b_i, k = 1, 2, \dots, n, a_n = M.$

1

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com