Bulgarian Mathematical Olympiad 2006
Regional Round, April 15-16

Grade 9
1. Find all real numbers a such that the roqgtandx, of the equation
X* +6x+6a—a’=0
satisfy the relatiomx, = xf — 8X3. (Ivan Landjev)

2. Two circlesk; andk, meet at point#\ andB. A line throughB meets the circles
ki andk; at pointsX andY, respectively. The tangent lineskg at X and toky
atY meet alC. Prove that:

(a) £LXAC = ZBAY.
(b) ZXBA = /ZXBC, if Bis the midpoint ofXY.

(Stoyan Atanasov)
3. The positive integer§ m,n are such thatn— nis a prime number and
8(¢2 —mn) = 2(m2+ n?) + 5(m-+n)¢
Prove that 11+ 3 is a perfect square. (Ivan Landjev)
4. Find all integers such that the equation
X+ 23 + (aa9)x? — 4x+4=0
has at least one real root. (Stoyan Atanasov)

5. Given a right triangleABC (ZACB = 90°), let CH, H € AB, be the altitude to
AB andP andQ be the tangent points of the incircle &fABC to AC andBC,
respectively. IfAQ L HP find the ratio%.

(Stoyan Atanasov)

6. An air company operates 36 airlines in a country with 1paits. Prove that one
can make a round trip that includes 4 airports. (lvan Landjev
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Grade 10

1. A circlek is tangent to the arms of an acute ang@B at pointsA andB. Let
AD be the diameter df throughA andBP_LAD, P € AD. The lineOD meetsBP
at pointM. Find the ratiogh .
(Peter Boyvaienkov)

2. Find the maximum of the function

f(x) = logxlogx? + logx® + 3
~ log?x+logx2+2

and the values of, when it is attained. (Ivailo Kortezov)

3. LetQ™ be the set of positive rational numbers. Find all funén€ "™ — R such
thatf(1) =1, f(1/x) = f(x) foranyxe QT andxf(x) = (x+1) f (x— 1) for any
xeQt, x> 1. (Ivailo Kortezov)

4. The price of a merchandize dropped from March to AprilxBy, and went up
from April to May by y%. It turned out that in the period orn Mdwrto May the
prize dropped by (y x)%. Find andy if they are positive integers (the prize is
positive for the whole period). (Ivailo Kortezov)

5. LetABCD be a parallelogram such thaBAD < 90° andDE, E € AB, andDF,
F € BC, be the altitudes of the parallelogram. Prove that

4(AB-BC-EF +BD-AE-FC) <5-AB-BC-BD.
Find ZBAD if the equality occurs. (Ivailo Kortezov)

6. See problem 6 (grade 9).
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Grade 11

1. Letk be a circle with diameteAB and letC € k be an arbitrary point. The
excircles of AABC4 tangent to the side&C andBC are tangent to the lin&B at
pointsM andN, respectively. Denote b®; andO, the circumcenters oAAMC
andABNC. Prove that the area @fO,CO, does not depend dd. (Alexander
Ivanov)

2. Prove that
t2(xy+yz+2x) + 2t(x+y+2)+3>0 forallxy,zt €[1,1]
(Nikolai Nikolov)

3. Consider a s&dof 2006 points in the plane. A paiA, B) € SxSis calledisolated
if the disk with diameterAB does not contain other points fro& Find the
maximum number oifsolated pairs. (Alexander lvanov)

4. Find the least positive integarsuch that the system
X+y+z=a
Xy +Z2=a
has no an integer solution. (Oleg Mushkarov)

5. The tangent lines to the circumcirdeof an isosceleg\BAC, AC = BC, at the
pointsB andC meet at poinX. If AX meetsk at pointY, find the ratioAY /BY.
(Emil Kola)

6. Letas,ay,... be a sequence of real numbers less than 1 and suci.thda, +
2) =3,n>1. Prove that:
@@ —4<an< -2
(b) ay = —3 for anyn.

(Nikolai Nikolov)
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Grade 12

1. Find the area of the triangle determined by the straigie Jith equatiorx —
y+ 1= 0 and the tangent lines to the graph of the parapeta — 4x+ 5 at its
common points with the line. (Emil Kolev)

2. See problem n.5 (grade 11).
3. Find all real numbers, such that the inequality
X} +2a + a®x? — 4x+3>0
(Nikolai Nikolov)
4. Find all positive integers for which the equality

sin(na)  cogna)

- =n-1
sina cosa

holds true for ala# ¥, k € Z. (Emil Kolev)

5. A plane intersects a tetrahedrABCD and divides the medians of the triangles
DAB, DBC andDCA throughD inratios 1:2,1: 3 and 1: 4 from, respectively.
Find the ratio of the volumes of the two parts of the tetrabadwut by the plane.

(Oleg Mushkarov)

6. See problem 6 (grade 11).
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