Bulgarian Mathematical Olympiad 1994, Il Round

First Day, 23 april 1994

1. Letn > 1 is a natural number and, = {xe€ N | (x,n) # 1} is the set of all
natural numbers that aren’t mutually prime (coprime) withWe say that the
nis interesting if for every two numbers,y € A, itis truex+y € An.

(a) Prove that the number 43iigteresting.
(b) Prove that 1994 isninteresting.
(c) Find allinteresting numbers.

2. Around some circle are circumscribed a square and a teaRgove that at least
a half from the square’s perimeter lies inside the triangle.

3. Around unlimited chessboard is situated the figipey)-horse which on each
its move moveg-fields horizontally or vertically and-fields on direction per-
pendicular to the previous direction (the ordinary chessdds (2,1)-horse).
Find all pairs of natural numbei$,q) for which the(p,q)-horse can reach to
all possible fields on the chessboard with limited count ofeso
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4. The sequencay,ay, . . ., ay satisfies the condition:
an+1:2n_3an ) n:Oala

(a) Express the common teray as a function oy andn.
(b) Findag if an1 > an for each natural number.

5. It is given a rectangular parallelepip@@CDA;B;C1D1. The perpendiculars
from the pointA to the linesA;B, A;C andA;D intersects the linesyB1, A;.C
and A;1D intersects the line$yB;, AiC; and A;D; at the pointsM, N and P
respectively.

(a) Prove thaM, N andP lies on a common line.

(b) If E andF are the feets of the perpendiculars fréirto A;B andA; D. Prove
that the linePE, MF andAN have a single point in common.

6. Leta, b andc are real numbers such that equatid + bx+ ¢ = 0 have real
roots. Prove that ifa(b—c)| > [b? —ac| + |c? — ab| then the equation have at
least one root from the intervéd, 2).
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