Bulgarian Mathematical Olympiad 1993, IV Round

First Day

1. Find all functionsf, defined and having values in the set of integer numbers, for
which the following conditions are satisfied:

(@ f(1)=1;

(b) for every two whole (integer) numbensandn, the following equality is
satisfied:

f(m+n)-(f(m) - f(n)) = f(m—n) - (f(m)+ f(n))

2. The pointM is internal point for the triangl&BC such that: Z/AMC = 90°,
/AMB = 150 and Z/BMC = 120°. PointsP, Q andR are centers of circum-
scribed circles around trianglégMC, AMB andBMC. Prove that the area of
trianglePQR s bigger than the area of the triangiBC.

3. Itis given a polyhedral constructed from two regular pyids with bases hep-
tagons (a polygon with 7 vertices) with common bags#,A3;A4AsAsA7 and
vertices respectively the poinBsandC. The edge®A;, CA (i=1,...,7), diag-
onals of the common base are painted in blue or red. Provétia exists three
vertices of the polyhedral given which forms a triangle véthsizes in the same
color.

Second day

4. Find all natural numbers > 1 for which there exists such natural numbers
ai,ap,...,an for which the numberi{a; +a;|1<i<j< n} forms a full sys-
tem modulo—"(”;D.

5. LetOxy is a fixed rectangular coordinate system in the plane. Eatdred pair
of pointsA4, A, from the same plane which are different fr@rand have coor-
dinatesx, y1 andxy, y» respectively is associated with real numibédg, Ay) in
such a way that the following conditions are satisfied:

(a) If OA1 = OBl, OAZ = OBZ al"ldAlAz = Ble thenf (A17A2) = f(Bl, Bz).

(b) There exists a polynomial of second dedfée, v,w, z) such thatf (A1, Ay) =
F(X1,Y1,%2,¥2)-

(c) There exists such a numbere (0, 1) that for every two point#\, A, for
which ZA;0A; = @ is satisfiedf (A1, A2) = 0.

(d) If the pointsAq, A, are such that the triang@A; A is equilateral with side
1thenf (A, Ar) = 1.

Prove thatf (Aq, Ay) = OA, - OA; for each ordered pair of points;, A,.
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6. Find all natural numbens for which there exists se&& consisting ofn points in
the plane, satisfying the condition:

For each poinA € Sthere exist at least three points 9&yY, Z from Ssuch that
the segmentdX, AY andAZ have length 1 (it means thAKX = AY = AZ = 1).
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