
Bulgarian Mathematical Olympiad 1993, IV Round

First Day

1. Find all functionsf , defined and having values in the set of integer numbers, for
which the following conditions are satisfied:

(a) f (1) = 1;

(b) for every two whole (integer) numbersm andn, the following equality is
satisfied:

f (m+ n) · ( f (m)− f (n)) = f (m−n) · ( f (m)+ f (n))

2. The pointM is internal point for the triangleABC such that:∠AMC = 90◦,
∠AMB = 150◦ and∠BMC = 120◦. PointsP, Q andR are centers of circum-
scribed circles around trianglesAMC, AMB andBMC. Prove that the area of
trianglePQR is bigger than the area of the triangleABC.

3. It is given a polyhedral constructed from two regular pyramids with bases hep-
tagons (a polygon with 7 vertices) with common baseA1A2A3A4A5A6A7 and
vertices respectively the pointsB andC. The edgesBAi, CAi (i = 1, . . . ,7), diag-
onals of the common base are painted in blue or red. Prove thatthere exists three
vertices of the polyhedral given which forms a triangle withall sizes in the same
color.

Second day

4. Find all natural numbersn > 1 for which there exists such natural numbers
a1,a2, . . . ,an for which the numbers

{

ai + a j | 1≤ i ≤ j ≤ n
}

forms a full sys-

tem modulon(n+1)
2 .

5. LetOxy is a fixed rectangular coordinate system in the plane. Each ordered pair
of pointsA1, A2 from the same plane which are different fromO and have coor-
dinatesx1, y1 andx2, y2 respectively is associated with real numberf (A1,A2) in
such a way that the following conditions are satisfied:

(a) If OA1 = OB1, OA2 = OB2 andA1A2 = B1B2 then f (A1,A2) = f (B1,B2).

(b) There exists a polynomial of second degreeF(u,v,w,z) such thatf (A1,A2)=
F(x1,y1,x2,y2).

(c) There exists such a numberφ ∈ (0,π) that for every two pointsA1, A2 for
which∠A1OA2 = φ is satisfiedf (A1,A2) = 0.

(d) If the pointsA1, A2 are such that the triangleOA1A2 is equilateral with side
1 then f (A1,A2) = 1

2.

Prove thatf (A1,A2) =
−−→
OA1 ·

−−→
OA2 for each ordered pair of pointsA1, A2.
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6. Find all natural numbersn for which there exists setS consisting ofn points in
the plane, satisfying the condition:

For each pointA ∈ S there exist at least three points sayX , Y , Z from S such that
the segmentsAX , AY andAZ have length 1 (it means thatAX = AY = AZ = 1).
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LATEX and translation by Borislav Mirchev and Ercole Suppa
www.imomath.com


