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Problems

1.1 The Forty-Sixth IMO
M érida, Mexico, July 8-19, 2005

1.1.1 Contest Problems

First Day (July 13)

1. Six points are chosen on the sides of an equilateral tieakBC: A;, A, on BC;
B1,B, on CA; C;,C, on AB. These points are vertices of a convex hexagon
A1A;B1B,C1C, with equal side lengths. Prove that the linkgB,, B,C, and
C1A, are concurrent.

2. Letaj,ay,... be a sequence of integers with infinitely many positive teamd
infinitely many negative terms. Suppose that for each pesititegein, the num-
bersa;,a,...,ay leaven different remainders on division by Prove that each
integer occurs exactly once in the sequence.

3. Letx,y andz be positive real numbers such tha > 1. Prove that
5_ 2 _\2 _
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Second Day (July 14)

4. Consider the sequenag ay, ... defined by
ah=2"+3"+6"-1 (n=12,...).
Determine all positive integers that are relatively priroeevery term of the
sequence.

5. LetABCD be a given convex quadrilateral with sid&S andAD equal in length
and not parallel. LeE andF be interior points of the sideBC andAD respec-
tively such thaBE = DF. The linesAC andBD meet atP, the linesBD andEF



2

1 Problems

meet atQ, the linesEF andAC meet atR. Consider all the triangleBQR asE
andF vary. Show that the circumcircles of these triangles havenangon point
other tharP.

In a mathematical competition 6 problems were posed tadn¢estants. Each
pair of problems was solved by more thafbdf the contestants. Nobody solved
all 6 problems. Show that there were at least 2 contestantsesbh solved
exactly 5 problems.

1.1.2 Shortlisted Problems

1.

Al (ROM) Find all monic polynomialg(x) with integer coefficients of degree
two for which there exists a polynomig(x) with integer coefficients such that
p(x)q(x) is a polynomial having all coefficients1.

. A2 (BUL) LetR* denote the set of positive real numbers. Determine all func-

tionsf : R™ — R such that

F)T(y) = 2 (x-+ (%))

for all positive real numbersandy.

. A3 (CZE) Four real numbersp,q,r,s satisfy

p+q+r+s=9 and pPP++r>+=21

Prove thagb — cd > 2 holds for some permutatiqa, b,c,d) of (p,q,r,s).

. A4 (IND) Find all functionsf : R — R satisfying the equation

f(x+y)+ f)f(y)=f(xy)+2xy+1

for all realx andy.

. A5 (KOR)™O3 | et x,y andz be positive real numbers such thgrz > 1. Prove

that s ) 52
XX 4 oy + ~ >0.
X5+y2+22 y5+22+X2 25+X2+y2

. C1 (AUS) A house has an even number of lamps distributed among itsgsoom

in such a way that there are at least three lamps in every rBaoh lamp shares
a switch with exactly one other lamp, not necessarily frosmm¢ame room. Each
change in the switch shared by two lamps changes their statedtaneously.
Prove that for every initial state of the lamps there existse@uence of changes
in some of the switches at the end of which each room contaimps$ which are
on as well as lamps which are off.

. C2 (IRN) Letk be a fixed positive integer. A company has a special method to

sell sombreros. Each customer can convince two personyia sombrero after
he/she buys one; convincing someone already convincedradaeunt. Each
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of these new customers can convince two others and so onchf@ze of the
two customers convinced by someone makes at lepstsons buy sombreros
(directly or indirectly), then that someone wins a freerinstional video. Prove
that if n persons bought sombreros, then at nmy$k + 2) of them got videos.

. C3(IRN) Inanmx nrectangular board afin unit squaresadjacent squares are

ones with a common edge, angath is a sequence of squares in which any two
consecutive squares are adjacent. Each square of the lzovab& colored black
or white. LetN denote the number of colorings of the board such that thesesex
at least one black path from the left edge of the board togtst edge, and le¥l
denote the number of colorings in which there exist at leastton-intersecting
black paths from the left edge to the right edge. Proveiat 2™M.

. C4 (COL) Letn> 3 be a given positive integer. We wish to label each side

and each diagonal of a regulaigonP; ... B, with a positive integer less than or
equal tor so that:

(i) every integer between 1 amdbccurs as a label;

(i) in each triangleR P;R, two of the labels are equal and greater than the third.
Given these conditions:

(a) Determine the largest positive integdor which this can be done.

(b) For that value of, how many such labellings are there?

C5 (SMN) There aren markers, each with one side white and the other side
black, aligned in a row so that their white sides are up. Ihesep, if possible,
we choose a marker with the white side up (but not one of oudetmarkers),
remove it and reverse the closest marker to the left and tsest marker to the
right of it. Prove that one can achieve the state with only twaskers remaining

if and only if n— 1 is not divisible by 3.

C6 (ROM)™O6 |n a mathematical competition 6 problems were posed to the
contestants. Each pair of problems was solved by more tham®2the contes-
tants. Nobody solved all 6 problems. Show that there wereast 2 contestants
who each solved exactly 5 problems.

C7 (USA) Letn > 1 be a given integer, and let, ... ,a, be a sequence of inte-
gers such that divides the sunay + - - - + a,. Show that there exist permutations
ogandrof1,2,...,nsuch thao(i)+ 1(i) =& (modn) foralli=1,...,n.

C8 (BUL) Let M be a convexar-gon,n > 4. Somen — 3 of its diagonals are
colored green and some other- 3 diagonals are colored red, so that no two
diagonals of the same color meet insieFind the maximum possible number
of intersection points of green and red diagonals indide

G1 (GRE) In a triangleABC satisfyingAB + BC = 3AC the incircle has center
| and touches the sidé8 andBC at D andE, respectively. LeK andL be the
symmetric points oD andE with respect td. Prove that the quadrilater&CKL
is cyclic.
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G2 (ROM)™O1 six points are chosen on the sides of an equilateral triakB
A1,A> onBC; By, B, onCA; C1,C, on AB. These points are vertices of a convex
hexagor; A,B1B,C,C, with equal side lengths. Prove that the likg8,, B1C,
andC, A, are concurrent.

G3 (UKR) Let ABCD be a parallelogram. A variable lingpassing through the
pointA intersects the rayBC andDC at pointsX andY, respectively. LeK and
L be the centers of the excircles of triangh8X and ADY, touching the sides
BX andDY, respectively. Prove that the size of aniléL does not depend on
the choice of the liné.

G4 (POL)™O5 et ABCD be a given convex quadrilateral with sid&S andAD
equal in length and not parallel. LEtandF be interior points of the sideBC
andAD respectively such th&E = DF. The linesAC andBD meet atP, the
lines BD andEF meet atQ, the lineseF and AC meet atR. Consider all the
trianglesPQR asE andF vary. Show that the circumcircles of these triangles
have a common point other th&n

G5 (ROM) Let ABC be an acute-angled triangle wikB £ AC, let H be its

orthocenter and! the midpoint ofBC. PointsD on AB andE on AC are such
that AE = AD andD,H . E are collinear. Prove thatiM is orthogonal to the
common chord of the circumcircles of triangkBC andADE.

G6 (RUS) The mediarAM of a triangleABC intersects its incircleo atK and
L. The lines throughk andL parallel toBC intersectw again atX andY. The
linesAX andAY intersectBC atP andQ. Prove thaBP = CQ.

G7 (KOR) In an acute triangldBC, letD, E, F, P, Q, Rbe the feet of perpen-

diculars fromA, B, C, A, B, C to BC, CA, AB, EF, FD, DE, respectively. Prove

that p(ABC) p(PQR) > p(DEF)?, wherep(T) denotes the perimeter of triangle
T.

N1 (POL)MO4 Consider the sequeneg, ay, ... defined by
an=2"+3"+6"-1 (n=1,2,...).

Determine all positive integers that are relatively primeevery term of the
sequence.

N2 (NET)™MO? | etay, a,, ... be a sequence of integers with infinitely many pos-
itive terms and infinitely many negative terms. Suppose filmeach positive
integern, the numbersy, ay, . .., a, leaven different remainders on division by
n. Prove that each integer occurs exactly once in the sequence

N3 (MON) Leta, b, c, d, eand f be positive integers. Suppose that the sum
S=a+b+c+d+e+ f divides bothabc+ def andab+bc+ca—de—ef — fd.
Prove thaSis composite.

N4 (COL) Find all positive integera > 1 for which there exists a unique integer
awith 0 < a< n! such thata" + 1 is divisible byn!.



25,

26.

27.

1.1 Copyright®©: The Authors and Springer 5

N5 (NET) Denote byd(n) the number of divisors of the positive integerA

positive integenis calledhighly divisibleif d(n) > d(m) for all positive integers

m < n. Two highly divisible integersn andn with m < n are called consecutive

if there exists no highly divisible integasrsatisfyingm < s< n.

(a) Show that there are only finitely many pairs of conseethighly divisible
integers of the fornia, b) with alb.

(b) Show that for every prime numbgrthere exist infinitely many positive
highly divisible integers such thatpr is also highly divisible.

N6 (IRN) Leta andb be positive integers such that + n dividesb" + n for
every positive integen. Show thaia = b.

N7 (RUS) Let P(x) = apx" 4 a,_1X" 1+ --- 4 ag, whereay, ..., a, are integers,
an > 0,n> 2. Prove that there exists a positive integesuch thatP(m!) is a
composite number.
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8 2 Solutions
2.1 Solutions to the Shortlisted Problems of IMO 2005

1. Clearly,p(x) has to be of the fornp(x) = x? 4 ax+ 1 wherea is an integer. For
a= +1 anda = 0 polynomialp has the required property: it suffices to take
g= 1 andgq = x+ 1, respectively.

Suppose now thga| > 2. Thenp(x) has two real roots, say,xp, which are
also roots ofp(x)q(x) = X" +an_1xX""1+--- +ag, & = £1. Thus

<l o1
~ |l " x| -1

71— &1 4t ﬂri
Xi X
which implies|xi|, [x2| < 2. This immediately rules out the cals¢ > 3 and the
polynomialsp(x) = x? + 2x— 1. The remaining two polynomiale & 2x + 1
satisfy the condition fog(x) = xF 1.
Summing all, the polynomialg(x) with the desired property an€ +x=+ 1,
x?+ 1 andx? 4 2x+ 1.

2. Giveny > 0, consider the functiow (x) = x+ yf(x), x > 0. This function is
injective: indeed, if¢ (x1) = ¢ (x2) then f(x1)f(y) = f(¢(x1)) = f(¢(x2)) =
f(x2)f(y), sof(x1) = f(x2), SOXg = X2 by the definition ofg. Now if x; > x»
and f(x1) < f(x2), we haved(x;) = ¢(xz) for y = % > 0, which

is impossible; hencé is non-decreasing. The functional equation now yields

f(x)f(y) = 2f (x+yf(x)) > 2f(x) and consequentlf(y) > 2 fory > 0. There-
fore

f(x+yf(x)) = f(xy) = F(y+xE(y)) = £(2)
holds for arbitrarily smaly > 0, implying thatf is constant on the intervak, 2x|
for eachx > 0. But thenf is constant on the union of all intervals 2x] over alll
x> 0, that is, on all ofR ™. Now the functional equation gives di¢x) = 2 for all
X, which is clearly a solution.

Second Solution. In the same way as above we prove tifias non-decreasing,
hence its discontinuity set is at most countable. We camelxteo R U {0} by
defining f (0) = infy f (X) = limy_o f(x) and the new functiotf is continuous at
0 as well. Ifxis a point of continuity off we havef (x) f(0) = limy_o f(x) f(y) =
limy_o2f (x+yf(x)) = 2f(x), hencef (0) = 2. Now, if  is continuous at@then
2f(y) =limy_o f(X) f(y) = limy_02f (x+yf(X)) = 2f(2y). Thusf(y) = f(2y),
for all but countably many values gf Being non-decreasing is a constant,
hencef (x) = 2.

3. Assume w.l.0.g. thgt > q>r > s. We have

(p+g+r+s)’—p>—q¢—r?>—-s
2

Itis easy to see thag+rs> pr+qgs> ps+qr which gives ugpg+rs> 10. Now
settingp+q= xwe obtain? -+ (9—x)? = (p+q)?+ (r +5)2 = 214+-2(pg+rs) >
41 which is equivalent tgx— 4)(x—5) > 0. Sincex= p+q > r + swe conclude
thatx > 5. Thus

(pq+rs) + (pr+0s) + (ps+ar) = = 30.
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25< PP+ 7 +2pg= 21— (r?4+ %) +2pq < 21+ 2(pq—rs),

or pg—rs> 2, as desired.
Remark. The quadruplé€p,q,r,s) = (3,2,2,2) shows that the estimate 2 is the
best possible.

. Settingy = 0 yields (f(0) + 1)(f(x) — 1) = 0, and sincef (x) = 1 for all x is
impossible, we gef(0) = —1. Now plugging inx = 1 andy = —1 gives us
f(1) =1 or f(—1) = 0. In the first case setting= 1 in the functional equation

yields f(y+1) =2y+1, i.e.f(X) = 2x— 1 which is one solution.
Suppose now thaf(1) = a# 1 and f(—1) = 0. Plugging(x,y) = (z,1) and
(x,¥) = (—z,—1) in the functional equation yields

f(z+1) = (1-a)f(z+2z+1
f—z—1) = () + 22+ 1. (+)

Itfollows thatf(z+1) = (1—a)f(—z—1)+a(2z+1),i.e.f(x) = (1—a) f(—x)+
a(2x—1). Analogouslyf (—x) = (1 —a) f (x) +a(—2x— 1), which together with
the previous equation yields

(a® — 2a)f(x) = —2a’x— (a®— 2a).

Now a = 2 is clearly impossible. Foa ¢ {0,2} we getf(x) = %2" —1. This
function satisfies the requirements only fo= —2, giving the solutionf (x) =
—x— 1. In the remaining case, when= 0, we havef (x) = f(—x). Settingy =z
andy = —zin the functional equation and subtracting yiefdgz) = 422 — 1, so
f(x) = x> — 1 which satisfies the equation.

Thus the solutions arg(x) = 2x— 1, f(x) = —x— 1 andf (x) = x> — 1.

. The desired inequality is equivalent to

X2+ y? + 22 %+ﬁ+£+%+f+£

(+)

By the Cauchy inequality we have® +y? + ) (yz+y? + 22) > (x/?(y2)¥/? +
y2+22)? > (X2 +y2 + 22)2 and therefore

XA+ yzHyYP+ R
< .
WAy +22 = R +y2 42

We get analogous inequalities for the other two summands)inSumming
these up yields
Rty +Z Kty 47 Xy 42 XYz
X+y2+22 Y+ 2+x2 PRy T Xy + 2]

which together with the well-known inequalitf + y? + 22 > xy + yz+ zx gives
us the result.
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Second solution. Multiplying the both sides with the common denominator and
using the notation as in Chapter®\irhead’sinequality) we get

Ts55+4T750+ T522+To00> Ts52+ Te 00+ 21540+ 2Ta 20+ T2 2.

By Schur’s and Muirhead’s inequalities we have thag o+ Ts22 > 2T750 >
2T71.1. Sincexyz > 1 we have thaly 11 > Te 00. Therefore

To00+T522 > 2Ts00 > Te00+ T420. (1)

Moreover, Muirhead’s inequality combined wikiz> 1 gives usly 50 > Ts 5 2,
2T750> 2T 51> 2540, T750 > Te.a,2 > Ta 20, andTs 55 > To 2 2. Adding these
four inequalities to (1) yields the desired result.

. A room will be calledeconomic if some of its lamps are on and some are off.

Two lamps sharing a switch will be callédins. The twin of a lamd will be
denoted.

Suppose we have arrived at a state with the minimum possibitéber of un-
economic rooms, and that this number is strictly positivet us choose any
uneconomic room, sai¥p, and a lampg in it. Let Ig be in a roonR;. Switching

lo we makeR, economic; thereby, since the number of uneconomic rooms can
not be decreased, this change must make rBpmneconomic. Now choose a
lamply in Ry having the twinl; in a roomR,. Switchingl; makesR; economic,
and thus must makig; uneconomic. Continuing in this manner we obtain a se-
quencdg,ly,... of lamps withl; in a roomR; andl; # l;,1 in R 1 for alli. The
lampslg, l1,... are switched in this order. This sequence has the propeaty th
switchingl; andl; makes roonRR; economic and roor®; ;1 uneconomic.

Let Ryy = R¢ with m > k be the first repetition in the sequen@®). Let us stop
switching the lamps di,_1. The roomR, was uneconomic prior to switching
lx. Thereafter lamps andln_1 have been switched iR, but since these two
lamps are distinct (indeed, their twihg and |1 are distinct), the roonfrg

is now economic as well as all the rooRRg,R,...,Rn_1. This decreases the
number of uneconomic rooms, contradicting our assumption.

. Letv be the number of video winners. One easily finds thatferl andv = 2,

the numben of customers is at leask2- 3 and X+ 5 respectively. We prove
by induction orv that if n > k+ 1 thenn > (k+ 2)(v+1) — 1.

We can assume w.l.0.g. that the total numbef customers is minimum possible
for givenv > 0. Consider a persddwho was convinced by nobody but himself.
ThenP must have won a video; otherwigecould be removed from the group
without decreasing the number of video winners. QetndR be the two persons
convinced byP. We denote by the set of persons made BythroughQ to buy

a sombrero, includin@, and by 2 the set of all other customers excluding
P. Let x be the number of video winners . Then there ar@ — x— 1 video
winners inZ. We have|%| > (k+ 2)(x+ 1) — 1, by induction hypothesis if
x> 0 and becausP is a winner ifx = 0. Similarly, |2| > (k+ 2)(v—x) — 1.
Thusn > 14 (k+2)(x+1) — 14 (k+2)(v—x) —1,i.e.n> (K+2)(v+ 1) — 1.
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8. Suppose that a two-sidedx n boardT is considered, where exactkyof the
squares are transparent. A transparent square is colohgdmione side (then
it looks the same from the other side), while a non-transgaree needs to be
colored on both sides, not necessarily in the same color.

LetC = C(T) be the set of colorings of the board in which there exist tvazhl
paths from the left edge to the right edge, one on top and oderarath, not
intersecting at any transparent squarek 4 0 then|C| = N°. We prove by in-
duction onk that |C| < N2: this will imply the statement of the problem, as
IC| =M for k=mn.

Let g be a fixed transparent square. Consider any cold®imgC: If g is con-
verted into a non-transparent square, a new bddrdith k — 1 transparent
squares is obtained, so by the induction hypothesig|e(T’)| < N2. Since
B contains two black paths at most one of which passes thraygiolor-
ing g in either color on the other side will result in a coloring@; hence
IC(T")| > 2|C(T)|, implying 2|C(T)| < N2 and finishing the induction.

Second solution. By path we shall mean a black path from the left edge to the
right edge. Leter denote the set of pairs ofi x n boards each of which has a
path. Let# denote the set of pairs of boards such that the first boarahwasdn-
intersecting paths. Obviously?| = N? and|%| = 2™M. To show|.«/| > | %]
we will construct an injectiorf : 8 — 7.

Among paths on a given board we define patb belower thany if the set of
squares “underX is a subset of the squares unglethis relation is a relation of
incomplete order. However, for each board with at least atle fhere exists the
lowest path (comparing two intersecting paths, we can adviake the “lower
branch” on each non-intersecting segment). Now, for a galement of%, we
“swap” the lowest path and all squares underneath on thebiiaitd with the
corresponding points on the other board. This swappingatioeris the desired
injection f. Indeed, since the first board still contains the highesh fahich
didn’t intersect the lowest one), the new configuration bgkoto.es. On the
other hand, this configuration uniquely determines the hywath on the original
element of%; hence no two different elements &f can go to the same element
of «7. This completes the proof.

9. Let [XY] denote the label of segmeHKlY, whereX andY are vertices of the
polygon. Consider any segmeltN with the maximum labe[MN] = r. By
condition (ii), for anyP, = M, N, exactly one oM andPRN is labelled byr.
Thus the set of all vertices of thregon splits into two complementary groups:
o ={R | [PM] =r} andZ = {R | [PN] =r}. We claim that a segmentY
is labelled byr if and only if it joins two points from different groups. Assie
w.l.o.g.thatX € &. If Y € &7, then[XM] = [YM] =1, so[XY] <r. If Y € &,
then[XM] =r and[YM] < r, so[XY] =r by (ii), as we claimed.

We conclude that a labelling satisfying (ii) is uniquelyel®ined by groupsy

and % and labellings satisfying (ii) withif andB.

(&) We prove by induction onthat the greatest possible valueraé n— 1. The
degenerate cases= 1,2 are trivial. Ifn > 3, the number of different labels



12 2 Solutions

of segments joining vertices ¥ (resp.%) does not exceefd? | — 1 (resp.
|%| — 1), while all segments joining a vertex i and a vertex inZ are
labelled byr. Therefore < (|.o7| — 1)+ (|#| — 1)+ 1= n—1. The equality
is achieved if all the mentioned labels are different.

(b) Leta, be the number of labellings with=n— 1. We prove by induction that

= mg,‘,jll)! . This is trivial forn =1, so letn > 2. If |<7| = k is fixed, the

groups« and.Z can be chosen ify) ways. The set of labels used within
</ can be selected among2l.....n— 2 in (} %) ways. Now the segments
within groupse and% can be labelled so as to satisfy (ii) & anday,_g
ways, respectively. This way every labelling has been aitwice, since

choosing« is equivalent to choosing. It follows that

SRV

(n—DInt e an_k
2n—1) & K(k-1)! (n-KIn—k-1)
ni(n—1)

1)

n!

n—1)nt 1 ni(n-1)!
ZZkl on—k-1 " on-1 ’

2(n—

10. Denote by the leftmost and by the rightmost marker. To start with, note that
the parity of the number of black-side-up markers remairchanged. Hence, if
only two markers remain, these markers must have the sameuwuol
We 'll show by induction om that the game can be successfully finished if and
only if n=0 orn= 2 (mod 3), and that the upper sidesLandR will be black
in the first case and white in the second case.

The statement is clear for= 2, 3. Assume that we finished the game for some
n, and denote b the position of the markex (counting from the left) that was
last removed. Having finished the game, we have also finishedubgames
with the k markers fromL to X and with then — k+ 1 markers fromX to R
(inclusive). Thereby, befor® was removed, the upper sidelohad been black
if k=0 and white ifk = 2 (mod 3), while the upper side &had been black if
n—Kk+1= 0 and white ifn—k+ 1= 2 (mod 3). Marker& andR were reversed
upon the removal oK. Therefore, in the final positioh andR are white if and
only if k= n—k+ 1= 0, which yieldsn = 2 (mod 3), and black if and only if
k=n-—k+ 1= 2, which yieldsn = 0 (mod 3).

On the other hand, a game wittmarkers can be reduced to a game with 3
markers by removing the second, fourth, and third markehis order. This
finishes the induction.

Second solution. An invariant can be defined as follows. To each white marker
with k black markers to its left we assign the numbef)X. Let Sbe the sum of
the assigned numbers. Then it is easy to verify that the mheaiof S modulo

3 remains unchanged throughout the game: For example, whwbitemarker
with two white neighbors ankl black markers to its left is remove8decreases

by 3(—1).
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Initially, S= n. In the final position with two markers remain&kquals O if
the two markers are black and 2 if these are white (note thdiefore, the two
markers must be of the same color). Thus 0 or 2 (mod 3).

Conversely, a game with markers is reduced to— 3 markers as in the first
solution.

Assume there werecontestantsy; of whom solved exactly problems, where
ap+---+as = n. Let us count the numbét of pairs(C, P), where contestar@
solved the pair of problemB. Each of the 15 pairs of problems was solved by
atleast?! contestants, implyinty > 15- £ = 6n-+ 3. On the other handy

students solve&% pairs; hence
6n+ 3 <N < ay + 3az + 6a4+ 10as = 6n+ 4as — (3az + Sap + 6a; + 6ap).

Consequenthas > 1. Assume thats = 1. Then we must havdl = 6n+ 4,
which is only possible if 14 of the pairs of problems were sdhby exactly
Z”T*l students and the remaining one Blg'—l + 1 students, and all students but
the winner solved 4 problems.

The problemt not solved by the winner will be calletbugh and the pair of
problems solved b ”5” + 1 studentspecial.

Let us count the numbed, of pairs(C, P) for which P contains a fixed problem
p. Let by be the number of contestants who solyedrhenM; = 3b; (each of
the by students solved three pairs of problems contaimjngndMp = 3bp+ 1
for p#t (the winner solved four such pairs). On the other hand, eatifedive
pairs containingp was solved b “5” or Z“T” + 1 students, s, = 2n+ 2 if
the special pair contains andM, = 2n+ 1 otherwise.

Now sinceM; = 3by = 2n+1 or 2n+ 2, we have 8+ 1= 0 or 2 (mod 3). But
if p#tis a problem not contained in the special pair, we hdye= 3bp+ 1=
2n+1; hence B2+ 1= 1 (mod 3), which is a contradiction.

Suppose that there exist desired permutationand T for some sequence
ai,...,an. Given a sequencéh;) with sum divisible byn which differs mod-
ulo n from (&) only in two positions, say; andi,, we show how to construct
desired permutations’ and 1’ for sequencéby). In this way, starting from an
arbitrary sequencg; ) for which g andr exist, we can construct desired permu-
tations for any other sequence with sum divisiblerbyAll congruences below
are modulan.

We know thata(i) + 1(i) = by for all i # i1,ip. We construct the sequence
i1,i2,i3,... as follows: for eactk > 2, iy, is the unique index such that

O (ik-1) + T(ik1) = by (%)

Letip = iq be the repetition in the sequence with the smallest/e claim that
p=1 or p= 2. Assume on the contrary that> 2. Summing up(x) for k =
p,p+1,...,0— 1 and taking the equalities(ix) + T(ix) = bj, for iy #i1,i2 into
accountwe obtaigr(ip-1)+ 0 (ip) +T(iq-1) +(iq) =bp+bg-1. Sinceiq=ip, it
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follows thata (ip-1) +T(iq-1) = bg_1 and therefore, ; =iq_1, a contradiction.
Thusp=1 orp=2 as claimed.
Now we define the following permutations:

o'(ix) = o(ik.1) fork=23,....,q—1 and 0'(i1) = 0(|q,1 :
T'(ix) = T(ikr1) fork=2,3,...,g—1 and 7'(i1) = { (Ii
o'(iy=o0o(i) and T'(i) = 1(i) fori¢{iy,...,ig-1}.

Permutationg’ and1’ have the desired property. Indeexd(i) + 7/(i) = b; ob-
viously holds for alli # i3, but then it must also hold far= i;.

For every green diagond) let C4 denote the number of green-red intersection
points ond. The task is to find the maximum possible value of the STy
over all green diagonals.

Letd; andd; be two green diagonals and let the part of polylyblying between

di anddj havemvertices. There are at mast- m— 1 red diagonals intersecting
bothd; andd;, while each of the remaining — 2 diagonals meets at most one
of d;,d;. It follows that

Cq +Ca <2(n—M-1)+(M-2)=2n—-m—4. (%)

We now arrange the green diagonals in a sequela@, ...,d,_3 as follows.
It is easily seen that there are two green diagodaiBndd, that divideM into
two triangles and ain — 2)-gon; then there are two green diagondgsandd,
that divide the(n — 2)-gon into two triangles and am — 4)-gon, and so on. We
continue this procedure until we end up with a triangle or adyilateral. Now
the part ofM betweendy, 1 anddy has at leash — 2k vertices for 1< k <
r, wheren—3 = 2r +-e, ec {0,1}; hence, by(x), Cy,, , +Cq, <n+2k—4.
MoreoverCqy, , < n— 3. Summing up yields

Co, +Cqp+ - +Cq, 5 < Z (n+2k—4)+en-3)
=3r24+e3r+1)= E(n—?,)ﬂ.

This value is attained in the following example. L&A, ... A, be then-gonM
and letl = [5] + 1. The diagonal$yA;, i =3,...,1 andAAj, j=1+2,....n
are colored in green, whereas the diagorald;, i =1 +1,...,n, andA11A;,
j=3,...,1 —1are colored in red.

Thus the answer i§3(n— 3)?].

LetF be the point of tangency of the incircle wiiC and letM andN be the
respective points of tangency AB andBC with the corresponding excircles. If

| is the incenter ant}, andP respectively the center and the tangency point with
ray AC of the excircle corresponding 8 we havefit = fl = fia = £z, which
implies thatAAIL ~ AAIgN. ThusL lies onAN, and analogouslg( lies onCM.

Denotex = AF andy = CF. SinceBD = BE, AD = BM = x, andCE = BN =,
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the conditionAB + BC = 3AC gives usDM =y andEN = x. Now the triangles
CLN andMKA are congruent since their altitudé® andLE satisfyDK = EL,
DM =CE, andAD = EN. ThusZAKM = ZCLN, implying thatACKL is cyclic.

LetP be the fourth vertex of the rhombGgA; AzP. Since/AC,PC; is equilateral,
we easily conclude th&;B,C; P is also a rhombus. ThusPB;A; is equilateral
andZ(CyA1,C1By) = LAPB; = 60°. It easily follows thathAAC;B, = ABA;C;
and consequentlC; = BA; similarly BA; = CB;. Therefore trianglé\;B,C;
is equilateral. Now it follows fronB;B, = B,C; that A;B, bisects/C;A;Bs.
Similarly, B.:Co and CiA biSECtZAlBlcl and /B1C1A; henceAle, B.Cy,
C1Ao meet at the incenter &;B,C,, i.e. at the center oABC.

SinceZADL = ZKBA =180 — :—ZLZBCD andZALD = %ZAYD = /KAB, trian-
glesABK andLDA are similar. Thugt = 8§ = £8 — BC which together with
/LDC = Z/CBK gives usALDC ~ ACBK. Therefore/KCL = 360° — /BCD —
(/LCD+ £ZKCB) = 360 — /BCD — (LCKB+ ZKCB) = 180" — ZCBK, which

is constant.

To start with, we note that poinB E,C are the images oD, F,A respec-
tively under the rotation around poifit for the anglecwwo = ZDOB, whereO is
the intersection of the perpendicular bisectors\éfandBD. ThenOE = OF
and ZOFE = ZOAC = 90— %; hence the point#,F,R,O are on a circle
and ZORP = 180> — ZOFA. Analogously, the point8,E,Q,O are on a cir-
cle andZ0OQP = 180° — ZOEB = ZOEC = ZOFA. This shows tha ORP =
180° — ZOQP, i.e. the poinD lies on the circumcircle ofAPQR, thus being the
desired point.

Let O and O; be the circumcenters of triangl@d8C and ADE, respectively.
It is enough to show thaHM || OO;. Let AA' be the diameter of the cir-
cumcircle of ABC. We note that ifB; is the foot of the altitude fronB, then
HE bisects/CHB;. Since the triangle€OM andCHB; are similar (indeed,
/CHB = /COM = /A), we haveSf = G = 63 = 220 — 44,

Thus, if Q is the intersection point

of the bisector ofZA'AH with HA,
we obtainlg—BE1 = g—,?, which together
with AC 1. AC andHB; L AC gives
usQE L AC. AnalogouslyQD 1 AB.
ThereforeAQ is a diameter of the cir-
cumcircle of AADE andO; is the mid-
point of AQ. It follows that OO; is a
middle line in AA’AQ which is paral-
leltoHM.

Second solution. We again prove thaDO; || HM. SinceAA’ = 2A0, it suffices
to proveAQ = 2A0;.

Elementary calculations of angles givetl8DE = ZAED = 90° — . Applying
the law of sines ta\DAH and AEAH we now haveDE = DH +EH = A1 |

Cos3
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AlcﬂO(;?ZSV_ SinceAH = 20M = 2Rcosa, we obtain

DE _ AH(cosB +cosy) _ 2Rcosa sing cos(ﬁ_gy)'

AO, = - = - -
1= 2sina 2sina cosg sina cos$

We now calculateAQ. Let N be the intersection oAQ with the circumcircle.
SinceZNAO = %’ we haveAN = 2Rcos(3—;y). Noting thatAQAH ~ AQNM
(and thatMN = R— OM), we have

AN-AH 2Rcog BY). 2 cos B 2Rcog BY) cosa B
MN+AH 1+ cosa B co

AQ=

2
a
32?

We denote b, E, F the points of tan-
gency of the incircle wittBC,CA, AB,
respectively, byl the incenter, and by
Y’ the intersection oAX andLY. Since
EF is the polar line to the poinA
with respect to the incircle, it meets
AL at pointR such thatA R/K,L are g &
conjugated, i.eff = KA. Then % =

KA _ KR _ KX _
A=RrR =% and thereforeLY =

LY, whereY is the intersection oKR
andLY. Thus showing thaty =LYy’ B Q D M p C
(which is the same as showing tHa¥ = MQ, i.e.CP = QC) is equivalent to
showing thaXY containsR. SinceXKYL is an inscribed trapezoid, it is enough
to show thaR lies on its axis of symmetry, that iB)].

SinceAM is the median, the trianglesRB andARC have equal areas and since

Z(RF,AB) = Z(RE,AC) we have that 1= -2 — 8T8 Hencef2 = ER.
Let I’ be the point of intersction of the line throughparallel tol E with the
line IR ThenEl' = ER — AC and /I'FI = ZBAC (angles with orthogonal rays).
Thus the triangle8BC andF 11’ are similar, implying thar'FI1’ = ZABC. Since

/FID = 180 — ZABC, it follows thatR,1, andD are collinear.

We shall show the inequalitiggABC) > 2p(DEF) and p(PQR) > 3 p(DEF).
The statement of the problem will immediately follow.

Let Dy and D. be the reflections oD in AB and AC, and letA;,B;,C; be
the midpoints oBC,CA, AB, respectively. It is easy to see tHag,F,E,D; are
collinear. Hencg(DEF ) = DyF + FE+ED; = DyD¢ < DpCy 4+ C1B1 4 B1D¢e =
3(AB+BC+CA) = 3p(ABC).

To prove the second inequality we observe tRaf), andR are the points of
tangency of the excircles with the sidesAADEF. Let FQ = ER=x, DR=
FP =y, andDQ = EP =z and letd, ¢, ¢ be the angles oADEF atD,E,F,
respectively. LetY andR be the projections o andR ontoEF, respectively.
ThenQR > QR = EF — FQ' — RE = EF — x(cosg + cosg). Summing this
with the analogous inequalities f6ID andDE we obtain
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p(PQR) > p(DEF) — x(cosp + cose) — y(cosd + cosp ) — z(cosd + COsE).

Assuming w.l.o.g. that <y < zwe also hav®E < FD < FE and consequently
COsP + cose > cosd + cosp > cosd + cose. Now Chebyshev’s inequality gives
us p(PQR) > p(DEF) — §(x-+Yy+ 2)(cose + cosp +cosd) > p(DEF) — (x+
y+2) = %p(DEF), where we used +y+z= %p(DEF) and the fact that the
sum of the cosines of the angles in a triangle does not ex%e‘ékﬁs finishes the
proof.

We will show that 1 is the only such number. It is sufficiemiprove that for
every prime numbep there exists somen, such thatp | an. Forp=2,3 we
havep | a, = 48. Assume now that > 3. Appyling Fermat's theorem, we have:

6ap p=3-2P142.3°" 11 6P 1 _6=34+2+1-6=0(modp).

Hencep | ap_», i.e. gcdp,ap_2) = p > 1. This completes the proof.

It immediately follows from the condition of the probldhat all the terms of
the sequence are distinct. We also note taat a,| < n—1 for all integers,n
wherei < n, because ifl = |a; —an| > nthen{ay,...,a4} contains two elements
congruent to each other moduth which is a contradiction. It easily follows
by induction that for everyr € N the set{ay,...,an} consists of consecutive
integers. Thus, if we assumed some intekg@lid not appear in the sequence
a;,ay,..., the same would have to hold for all integers either largesmoaller
thank, which contradicts the condition that infinitely many pastand negative
integers appear in the sequence. Thus, the sequence coaitaimegers.

Let us consider the polynomial
P(x) = (x+a)(x+b)(x+c) — (x—d)(x—e)(x— f) = %+ Qx+ R,

whereQ = ab+ bc+ ca— de—ef — fd andR = abc + def.

SinceS| Q,R, it follows thatS| P(x) for everyx € Z. Hence S| P(d) = (d+
a)(d+b)(d+c). SinceS> d+a,d + b,d + c and thus cannot divide any of
them, it follows thatS must be composite.

We will show thah has the desired property if and only if it is prime.
Forn=2 we can take onlya=1. Forn > 2 and even, 4n!, buta"+ 1=
1,2 (mod 4), which is impossible. Now we assume thas odd. Obviously
(nt—1)"+1=(-1)"+1=0 (modn!). If nis composite and its prime divisor,
then(® —1)"+1=30, (D) %’;, where each summand is divisible fybecause
d? | n!; thereforen! divides(%! - )n+ 1. Thus, all composite numbers are ruled
out.

It remains to show that ifi is an odd prime and! | a" + 1, thenn! | a+ 1 and
thereforea = n! — 1 is the only relevant value for whiafl | a" + 1. Consider any
prime numbep<n.If p % we havep | (—a)" — 1 and by Fermat's theorem
p|(—a)P1—1. Thereforep| (—a)"PY —1=—a—1,ie.a=—1 (modp).

But then% =a"!-a"24... —a+1=n(modp), implying thatp = n. It
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follows that% is coprime to(n— 1)! and consequentlgn — 1)! dividesa+ 1.
Moreover, the above consideration shows thaiust dividea+ 1. Thusn! |a+1

as claimed. This finishes our proof.

25. We will use the abbreviation HD to denote a “highly dikisi integer”. Let
n = 292(M3%(" ... p@%(" pe the factorization of into primes. We have(n) =
(az(n)+1)---(ap(n)+1). We start with the following two lemmas.

Lemma 1. If nis a HD andp, q primes withp* < ¢ (k,I € N), then
kag(n) <lap(n)+ (k+1)(1-1).

Proof. The inequality is trivial if ag(n) < |. Suppose thatiq(n) > |. Then
np/d is an integer less thag, andd(np¥/d') < d(n), which is equiva-
lent to (aq(n) +1)(ap(n) +1) > (agq(n) —1 4+ 1)(ap(n) + k+ 1) implying
the desired inequality.

Lemma 2. For eachp andk there exist only finitely many HD’s: such that
ap(n) <k.

Proof. It follows from Lemma 1 that ifis a HD withap(n) <k, thenag(n) is
bounded for each primgandaq(n) = 0 forq > p“t1. Therefore there are
only finitely many possibilities fon.

We are now ready to prove both parts of the problem.

(a) Suppose that there are infinitely many pé&&d) of consecutive HD’s with
a| b. Sinced(2a) > d(a), we must havéd = 2a. In particular,d(s) < d(a)
for all s < 2a. All but finitely many HD'sa are divisible by 2 and by 3
Thend(8a/9) < d(a) andd(3a/2) < d(a) yield

(az(a) +4)(as(a) — 1) < (az(a) +1)(as(a) +1) = 3as(a) — 5 < 2a2(a),
az(a)(as(a)+2) < (az(a) +1)(az(a) + 1) = az(a) < az(a) + 1.

We now have &3(a) — 5 < 202(a) < 203(a) + 2= as(a) < 7, which is a

contradiction.

(b) Assume for a given primp and positive integek thatn is the smallest HD
with ap > k. We show tha% is also a HD. Assume the opposite, i.e. that

there exists a HOn < % such thatd(m) > d(%). By assumptionm must
also satisfyarp(m) +1 < ap(n). Then

ap(n)+1
ap(n)
contradicting the initial assumption thatis a HD (sincemp < n). This

proves thal% is a HD. Since this is true for every positive integgghe proof
is complete.

M >d(n/p)

d(mp) = d(m) 2 0o >

d(n),

26. Assumind # a, it trivially follows thatb > a. Let p > b be a prime number and
lethn=(a+1)(p—1)+1.We note thabh=1(modp—1) andn= —a(mod p). It
follows thatr" =r - (rP~1)2*1 = r (mod p) for every integer. We now have" +
n=a—a=0(modp). Thus,a"+nis divisible byp, and hence by the condition
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of the problemb" + n is also divisible byp. However, we also havl” + n =
b—a(modp), i.e. p|b—a, which contradictp > b. Hence, it must follow that
b = a. We note thab = a trivially fulfills the conditions of the problem for all
acN.

Letp be a prime and < p an even number. We note thgt — k)!(k—1)! =
(=D Y(p—K!(p—k+1)...(p—1) = (=) (p—1)! = 1 (modp) by Wil-
son’'s theorem. Therefore

(k=1)1"P((p—K)!) = 31oa[(k—1)"![(p— k)t (k— 1)!]
=yoa(k—1)!"" = S((k—1)!) (modp),

whereS(x) = an +ap_1X+ - - - + aox". Hencep | P((p—k)!) if and only if p |
S((k—1)!). Note thatS((k— 1)!) depends only oik. Let k > 2a,+ 1. Then,
s= (k—1)!/a, is an integer which is divisible by all primes smaller than
HenceS((k— 1)!) = anby for someby = 1 (mods). It follows thatby is divisible
only by primes larger thak For large enoughwe haveby| > 1. Thus for every
prime divisorp of b, we havep | P((p—k)!).

It remains to select a large enoullfior which |P((p—k)!)| > p. We takek =
(g—1)!, whereqis a large prime. All the numbeksti fori =1,2,...,q—1 are
composite (by Wilson’s theorem,| k+ 1). Thusp = k+ q—+r, for somer > 0.
We now haveP((p—k)!)| = |P((g+1)")| > (q+r)! > (q—1)! +q+r=p, for
large enougty, sincen = degP > 2. This completes the proof.

Remark. The above solution actually also works for all linear polgmals P
other tharP(x) = x+ ao. Nevertheless, these particular cases are easily handled.
If |ag| > 1, thenP(m!) is composite form > |ag|, whereasP(x) = x+ 1 and
P(x) = x— 1 are both composite for, say—= 5!. Thus the conditiom > 2 was
redundant.
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Notation and Abbreviations

A.1 Notation

We assume familiarity with standard elementary notaticsedtheory, algebra, logic,
geometry (including vectors), analysis, number theorgl(ding divisibility and
congruences), and combinatorics. We use this notatiorglilye

We assume familiarity with the basic elements of the gamédets (the movement
of pieces and the coloring of the board).

The following is notation that deserves additional clasfion.

o A(A,B,C), A—B—C: indicates the relation dfetweenness, i.e., thatB is be-
tween A and C (this automatically means th#, B,C are different collinear
points).

o A=I1Nl,: indicates thaf is the intersection point of the linésandl,.

o AB: line throughA and B, segmentAB, length of segmenfB (depending on
context).

o [AB: ray starting inA and containindg.
(AB: ray starting inA and containindg, but without the poinA.
(

o [AB]: closed intervaAB, segmenfB, (AB) U{A,B}.

o (AB]: semiopen intervahB, closed aB and open af, (AB) U {B}.
The same bracket notation is applied to real numbers,[a,8),= {x|a<x<

b}.
o ABC: plane determined by poings B, C, triangle ABC (AABC) (depending on
context).

AB): open intervalAB, set of points betweef andB.

o [AB,C: half-plane consisting of linéB and all paoints in the plane on the same
side of AB asC.

o (AB,C: [AB,C without the lineAB.
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o a,b,c a,p,y: the respective sides and angles of triarBE (unless otherwise
indicated).
o k(O,r): circlek with centerO and radius.
o d(A, p): distance from poinA to line p.
o Saa,. A, areaoin-gonAgAy ... An (special case fan= 3, Sapc: area ofAABC).

o N, Z, Q, R, C: the sets of natural, integer, rational, real, complex nerslfre-
spectively).

o Zn: the ring of residues modulg n € N.
o Zp: the field of residues modulp, p being prime.

o Z[x], R[x]: the rings of polynomials ix with integer and real coefficients respec-
tively.

o R*:the set of nonzero elements of a riRg

o Rla], R(a), wherea is a root of a quadratic polynomial R[x|: {a+ba |a,be
R}.

o Xo: XU {0} for X such that G¢ X.

o XT,X7,aX+b,aX+bY: {x|xeX,x>0}, {x| xe X,x< 0}, {ax+b|xe X},
{ax+by|xe X,y e Y} (respectively) foX,Y CR, a,be R.

o [X], | x]: the greatest integer smaller than or equal.to

o [X]: the smallest integer greater than or equal.to

The following is notation simultaneously used in differeohcepts (depending on
context).

o |AB], x|, |9: the distance between two poiB, the absolute value of the num-
berx, the number of elements of the Sfrespectively).

o (x,y), (mn), (a,b): (ordered) paix andy, the greatest common divisor of inte-
gersmandn, the open interval between real numbaendb (respectively).

A.2 Abbreviations

We tried to avoid using nonstandard notation and abbreviatas much as possible.
However, one nonstandard abbreviation stood out as pkntigcwonvenient;

o w.l.o.g.: without loss of generality.
Other abbreviations include:

o RHS: right-hand side (of a given equation).

o LHS: left-hand side (of a given equation).
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o

o

A.2 Abbreviations 23
QM, AM, GM, HM: the quadratic mean, the arithmetic mean, t®metric
mean, the harmonic mean (respectively).
gcd, lem: greatest common divisor, least common multimsgectively).
i.e.:in other words.

e.g.: for example.
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Codes of the Countries of Origin

ARG
ARM
AUS
AUT
BEL
BLR
BRA
BUL
CAN
CHN
COL
CRO
CuB
CYP
CZE
Czs
EST
FIN
FRA
FRG
GBR
GDR
GEO
GER
GRE

Argentina
Armenia
Australia
Austria
Belgium
Belarus
Brazil
Bulgaria
Canada
China
Colombia
Croatia
Cuba
Cyprus

Czech Republic
Czechoslovakia

Estonia
Finland
France
Germany, FR

United Kingdom

Germany, DR
Georgia
Germany
Greece

HKG
HUN
ICE
INA
IND
IRE
IRN
ISR
ITA
JAP
KAZ
KOR
KUw
LAT
LIT
LUX
MCD
MEX
MON
MOR
NET
NOR
NZL
PER
PHI

Hong Kong
Hungary
Iceland
Indonesia
India

Ireland

Iran

Israel

Italy

Japan
Kazakhstan
Korea, South
Kuwait
Latvia
Lithuania
Luxembourg
Macedonia
Mexico
Mongolia
Morocco
Netherlands
Norway
New Zealand
Peru
Philippines

POL
POR
PRK
PUR
ROM
RUS
SAF
SER
SIN
SLO
SMN
SPA
SVK
SWE
THA
TUN
TUR
TWN
UKR
USA
USS
UzB
VIE
YUG

Poland
Portugal
Korea, North
Puerto Rico
Romania
Russia
South Africa
Serbia
Singapore
Slovenia
Serbia and Montenegro
Spain
Slovakia
Sweden
Thailand
Tunisia
Turkey
Taiwan
Ukraine
United States
Soviet Union
Uzbekistan
Vietnam
Yugoslavia



