Log In
Register
IMOmath
Olympiads
Book
Training
Forum
IMOmath
Number Theory
1.
(9 p.)
Let \( a \), \( b \), \( c \) be positive integers forming an increasing geometric sequence such that \( ba \) is a square. If \( \log_6a + \log_6b + \log_6c = 6 \), find \( a + b + c \).
2.
(3 p.)
The square \( \begin{array}{ccc} \hline x&20&151 \\\hline 38 & & \\ \hline & & \\ \hline\end{array} \) is magic, i.e. in each cell there is a number so that the sums of each row and column and of the two main diagonals are all equal. Find \( x \).
3.
(25 p.)
Let \( 0 < a < b < c < d \) be integers such that \( a \), \( b \), \( c \) is an arithmetic progression, \( b \), \( c \), \( d \) is a geometric progression, and \( d  a = 30 \). Find \( a + b + c + d \).
4.
(15 p.)
Find the least positive integer \( n \) such that when its leftmost digit is deleted, the resulting integer is equal to \( n/29 \).
5.
(46 p.)
Let \( a,b,c \) and \( d \) be positive real numbers such that \( a^2+b^2c^2d^2=0 \) and \( a^2b^2c^2+d^2=\frac {56}{53}(bc+ad) \), Let \( M \) be the maximum possible value of \( \frac {ab+cd}{bc+ad} \) ,If \( M \) can be expressed as \( \frac {m}{n} \),\( (m,n)=1 \) then find \( 100m+n \)
20052020
IMOmath.com
 imomath"at"gmail.com  Math rendered by
MathJax
Home

Olympiads

Book

Training

IMO Results

Forum

Links

About

Contact us