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ABSTRACT. The variance of the first-passage percolation is bounded by the L2-norms of
the derivatives with respect to the environment. In this paper we prove that the environment
derivatives of orders k ∈ {2,3,4} are bounded below by −

( k−2
⌈ k−2

2 ⌉
)

and above by
( k−2
⌈ k−2

2 ⌉
)
.

We believe that these are the bounds for all k. We provide examples of environments that
show that these extreme values can be attained.

1. INTRODUCTION

1.1. Model. We will use the same model and the definitions as in [4]. We refer the reader
to the same paper for more comprehensive historical remarks and overview of the literature.
For completeness, we will define the model here and state the results that we will need for
the proofs.

Let a < b be two fixed positive real numbers, and let p ∈ (0,1) be a fixed probability.
We consider a finite subgraph of the integer lattice Zd (for d ≥ 2), restricted to the box
[−2n,2n]d . Two vertices (x1, . . . ,xd) and (y1, . . . ,yd) are connected by an edge if they are
nearest neighbors, i.e., if |x1 − y1|+ · · ·+ |xd − yd |= 1.

Each edge e in this graph is independently assigned a random passage time, taking the
value a with probability p and b with probability 1− p. Let Wn denote the set of all such
edges, and define the sample space as Ωn = {a,b}Wn , where each element ω ∈ Ωn specifies
a particular realization of passage times on the edges.

Given a configuration ω and a path γ (a sequence of adjacent edges), the passage time
T (γ,ω) is defined as the sum of the passage times assigned to the edges in γ . For any two
vertices u and v, the function f (u,v,ω) denotes the minimal passage time over all paths
connecting u to v in the configuration ω .

When the destination vertex v is fixed, we may write fn(ω), or simply fn, to refer to
f (0,nv,ω).

A path γ is called geodesic if the minimum fn(ω) is attained at γ , i.e. if fn(ω)=T (γ,ω).

1.2. Environment derivatives. If we denote by Wn the set of all edges, then the sample
space is Ωn = {a,b}Wn . We will often omit the subscript n, when there is no danger of
confusion. For each edge j and each ω ∈ Ω, we define σa

j (ω) as the element of Ω whose
j-th coordinate is changed from ω j to a, regardless of what the original value ω j was. The
operation σb

j is defined in analogous way. Formally, for δ ∈ {a,b}, we define σδ
j : Ω → Ω

with [
σ

δ
j (ω)

]
k

=

{
ωk, k ̸= j,
δ , k = j. (1)
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If ϕ : Ω →R is any random variable, then the first order environment derivative ∂ jϕ is the
random variable defined as

∂ jϕ = ϕ ◦σ
b
j −ϕ ◦σ

a
j . (2)

For two distinct vertices k and l, we will give the name second order environment deriv-
ative to the quantity ∂k∂lϕ . In general, if S is a non-empty subset of W , the operator ∂Sϕ

is defined recursively as

∂Sϕ = ∂S\{ j} (∂ jϕ) , (3)

where j is an arbitrary element of S. The definition (3) is independent on the choice of j,
since a simple induction can be used to prove that for S = {s1, . . . ,sm}, the following holds

∂Sϕ = ∑
θ1∈{a,b}

· · · ∑
θm∈{a,b}

(−1)1a(θ1)+···+1a(θm)ϕ ◦σ
θ1
s1

◦ · · · ◦σ
θm
sm . (4)

The function 1a : {a,b}→ {0,1} in (4) assigns the value 1 to a and 0 to b.

1.3. Bounds on variance. A thorough understanding of environment derivatives would
lead to a complete understanding of the variance. As shown in [4], the variance can be
decomposed as

var( f ) = ∑
M⊆W,M ̸= /0

(p(1− p))|M| (E [∂M f ])2 ,

which highlights the central role of the L2-norms of the derivatives ∂M f in determining
fluctuation behavior. Despite their importance, general bounds for these norms are not yet
available.

The following result from [4] provides a bound on the variance in terms of environment
derivatives which generalizes results from [5] and [6].

Theorem 1. Let f be a random variable on Ω. For every integer k ≥ 1, there exists a real
constant C and an integer n0 such that for n ≥ n0, the following inequality holds

var( f ) ≤ ∑
M⊆W,1≤|M|<k

(p(1− p))|M| (E [∂M f ])2

+C · ∑
M⊆W,|M|=k,∥∂M f∥1 ̸=0

∥∂M f∥2
2

1+
(

log ∥∂M f∥2
∥∂M f∥1

)k , (5)

where ∥g∥p is the Lp-norm of the function g defined as

∥g∥p =

(∫
Ω

|g|p dP
)1/p

= (E[|g|p])1/p .

A widely conjectured upper bound for the variance in first-passage percolation is C ·n2χ ,
where the exponent χ depends on the dimension d. In two dimensions, current heuristics
and numerical evidence suggest that χ = 1

3 [1]. A rigorous upper bound of χ ≤ 1
2 was

proven by Kesten in 1993 [3], but a formal proof that χ is strictly less than 1
2 remains

elusive. For dimensions d > 2, even conjectural values of χ are not firmly established.
Nevertheless, as noted in [1], it is widely believed that χ remains positive in all dimensions,
with its value tending to zero as the dimension increases.

The best known upper bound on the variance is currently C · n
logn , due to the work of

Benjamini, Kalai, and Schramm [2]. Their argument relies on Talagrand’s inequality [5],
which involves first-order environment derivatives.
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We conjecture that the L2-norms ∥∂M f∥2 are small, particularly in dimensions d ≥ 3,
where exponential decay may occur. However, at present, these quantities remain analyti-
cally difficult to control.

This paper contributes to the analysis of environment derivatives by completing the
picture of almost sure bounds for all derivative orders up to four.

1.4. Almost sure bounds on environment derivatives. The sequence (U1,U2, . . .) rep-
resents the most optimal upper bounds for environment derivatives. The number Uk is
defined as the best upper bound on the k-th order environment derivative, i.e.

Uk =
1

b−a
max{∂S fn(ω) : n ∈ N,S ⊆Wn, |S|= k,ω ∈ Ωn} . (6)

The sequence (L1,L2, . . .) of the most optimal lower bounds is defined in an analogous
way

Lk =
1

b−a
min{∂S fn(ω) : n ∈ N,S ⊆Wn, |S|= k,ω ∈ Ωn} . (7)

Theorem 2. In dimensions d ≥ 3, the first four values of (Uk) and (Lk) are shown in the
table below.

k 1 2 3 4
Uk 1 1 1 2
Lk 0 −1 −1 −2

(8)

Theorem 3. The sequences (Uk) and (Lk) satisfy

Uk+1 ≤ Uk −Lk and Lk+1 ≥ Lk −Uk, (9)

for all k ≥ 1. Moreover, for all k ≥ 2,

Uk ≤ 2k−2 and |Lk| ≤ 2k−2. (10)

Also, for all integers k ≥ 2, the following holds:

Uk ≥
(

k−2
⌈ k−2

2 ⌉

)
and |Lk| ≥

(
k−2
⌈ k−2

2 ⌉

)
. (11)

Theorem 3 implies that (Uk) and (Lk) grow exponentially in k. Due to Stirling’s for-
mula, these sequences are between 2k−2

k−2 and 2k−2.
We conjecture that (11) are equalities. However, we have formal proofs only for k ∈

{1,2,3,4} and we believe that it is possible to obtain at least a computer-assisted proof for
k = 5. We don’t have the proof yet.

2. ESSENTIAL AND INFLUENTIAL EDGES

Except for Proposition 1 below, the results in this section were proved in [4]. Proposi-
tion 1 is trivial, but so important that it must be listed.

Proposition 1. For every i ̸= j, every α,β ∈ {a,b}, and every random variable ϕ ,

σ
α
i ◦σ

β

i = σ
α
i ; (12)

σ
α
i ◦σ

β

j = σ
β

j ◦σ
α
i ; (13)

(∂iϕ)◦σ
α
i = ∂iϕ; (14)

∂i∂iϕ = 0; (15)
∂i∂ jϕ = ∂ j∂iϕ; (16)

ϕ ·1ωi=α = ϕ ◦σ
α
i ·1ωi=α . (17)
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For a fixed edge j ∈Wn, define the events A j and Â j with

A j =
{

ω ∈ Ωn : ∂ j f (ω) ̸= 0
}

; (18)

Â j =
{

ω ∈ Ωn : ∂ j f (ω) = b−a
}
. (19)

The edge j is called influential if the event A j occurred, and very influential if Â j occurred.
The edge j is called essential if each geodesics passes through j, and semi-essential if at
least one geodesic passes through j. We will denote by E j the event that the edge j is
essential and by Ê j the event that the edge j is semi-essential.

Proposition 2. The events E j, A j, Ê j, and Â j satisfy

A j = (σa
j )

−1 (E j) ; (20)

Â j = (σb
j )

−1(Ê j). (21)

Proposition 3. The following two propositions hold for every ω ∈ Ω.
(a) If σa

j (ω) ∈ EC
j , then f (σb

j (ω)) = f (σa
j (ω));

(b) If σb
j (ω) ∈ Ê j, then f (σb

j (ω)) = f (σa
j (ω))+(b−a).

The sets {ω j = a} and {ω j = b} are the ranges of the transformations σa
j and σb

j , i.e.

σ
a
j (Ω) = {ω j = a} and σ

b
j (Ω) = {ω j = b}. (22)

Proposition 4. For every j ∈W, the events E j, Ê j, A j, and Â j satisfy

σ
a
j (A j) = σ

a
j (A j ∩{ω j = b}) = A j ∩

{
ω j = a

}
= E j ∩

{
ω j = a

}
; (23)

σ
b
j (Â j) = σ

b
j (Â j ∩{ω j = a}) = Â j ∩

{
ω j = b

}
= Ê j ∩

{
ω j = b

}
. (24)

Proposition 5. For every j ∈W, the events E j, Ê j, A j, and Â j satisfy

E j ⊆ Ê j, Â j ⊆ A j,

E j ⊆ A j, Â j ⊆ Ê j. (25)

Proposition 6. Assume that ω ∈ E j. A path γ is a geodesic on ω if and only if it is a
geodesic on σa

j (ω).

If −→α ∈ {a,b}m and −→v ∈W m, define σ
−→
α−→v : Ω → Ω as

σ
−→
α−→v = σ

α1
v1

◦ · · · ◦σ
αm
vm , (26)

where α1, . . . , αm are the components of −→α and v1, . . . , vm are the components of −→v .

3. DISJOINT LANES

Our goal is to construct special, extreme environments in which the derivatives attain
very large positive values and very small negative values. These environments will be used
to establish the bounds in (11) from Theorem 3.

The proofs involve somewhat lengthy algebraic calculations. Such calculations are
omitted here and are presented in the Appendix.

The results of this section apply to both models: the first-passage percolation between
source and sink, and the first-passage percolation time on torus model.

Fix non-negative integers m1, m2, β1, and β2 for which m1 +m2 ≥ 2. We investigate
the environments in which the source and the sink are connected by two paths P1 and P2
that have two straight disjoint segments γ1 and γ2 that are sufficiently far apart. The set S is
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assumed to have m = m1 +m2 edges. Let −→v = (v1, v2, . . . , vm) be the vector that contains
all edges of S. The section γ1 contains m1 of the edges from S and the section γ2 contains
m2 of the edges from S. We will denote by C1 the set of m1 edges from S that belong to
γ1. Similarly, C2 is the set of m2 edges from S that belong to γ2. On γ1 we fix a set B1
of β1 edges. On γ2 we fix a set B2 of β2 edges. We will consider the environment ω that
assigns the value b to all the edges from B1 and B2 and all the edges outside of P1∪P2. The
environment ω assigns the value a to every edge in P1 ∩P2 \ (B1 ∪B2).

We assume that n is sufficiently large to make it possible for the two paths P1 and P2 to
have the following properties:

• The paths P1 and P2 are of equal lengths.
• The sections γ1 and γ2 are of equal lengths.
• The sections γ1 and γ2 are far away from each other.
• The sets B1 and B2 are far from each other and far from all of the edges from S.

• For each −→x ∈ {a,b}m1+m2 , the only geodesics on σ

−→
ξ
−→v (ω) belong to {P1,P2}. In

other words, for any assignment of values to the edges of S, one or both of P1, P2
will be the geodesic, and there are no other geodesics.

γ1

γ2

γ1

γ2

C1

C2

B1

B2

· · ·

· · ·

Define D(m1,m2;β1,β2) to be the environment derivative ∂S f (ω) for the pair (S,ω)
that was described above.

Theorem 4. The number D(m1,m2;β1,β2) is 0 if β1 −β2 ≥ m2 or β2 −β1 ≥ m1. If both
of the inequalities β1 −β2 ≤ m2 −1 and β2 −β1 ≤ m1 −1 are satisfied, then

D(m1,m2;β1,β2) = (b−a) · (−1)m1+m2+β1+β2 ·
(

m1 +m2 −2
m1 +β1 −β2 −1

)
. (27)

Proof. The proof is in the Appendix. □

The next proposition implies the bounds (11) in Theorem 3.

Proposition 7. For every m ≥ 2, the following hold

Um ≥
(

m−2
⌈m−2

2 ⌉

)
and Lm ≤−

(
m−2
⌈m−2

2 ⌉

)
. (28)

Proof. If m is odd, then the bound for Um is attained when (27) is applied to (m1, m2; β1,
β2) = (m−1

2 , m+1
2 ; 1, 0). The bound for Lm is attained for (m1, m2; β1, β2) = (m+1

2 , m−1
2 ;

0, 0).
If m is even, then the bound for Um is attained for (m1, m2; β1, β2) = (m

2 , m
2 , 0, 0),

while the bound for Lm is attained for (m1, m2; β1, β2) = (m
2 −1, m

2 +1; 1, 0). □

4. ALMOST SURE BOUNDS

In this section we prove the Theorem 3. We will first prove the inequalities (9). It
suffices to prove the proposition below.
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Proposition 8. Assume ϕ is a random variable such that for every subset T ⊆ W with
k elements we have ∂T ϕ ∈ [L,U ]. Then, the following inequality holds for every subset
S ⊆W with k+1 elements.

∂Sϕ ∈ [L−U,U −L]. (29)

Proof. Let s be an arbitrary element of S. Let T = S\{s}.

∂Sϕ(ω) = ∂T ϕ(σb
s (ω))−∂T ϕ(σa

s (ω)).

The result (29) immediately follows from the previous equality. □

Theorem 5. Let k ∈W and let S ⊆W be a subset with at least two elements. The deriva-
tives of the first-passage percolation time f satisfy the following inequalities for every
ω ∈ Ω.

∂k f (ω) ∈ [0,b−a]; (30)
∂S f (ω) ∈ [−(b−a),b−a], if |S|= 2; (31)

|∂S f (ω)| ≤ 2|S|−2 · (b−a). (32)

Proof. The relation (30) is obvious because the function f must increase, and it can in-
crease by at most b− a if one edge changes its passage time from a to b. Let us first
observe that for sets S with two elements, the relation (31) and the inequality (32) follow
directly from (30) and (29). Observe that if ϕ is any function, and not just first passage
percolation time, then (4) implies |∂Gϕ(ω)| ≤ 2|G|∥ϕ∥∞ for every set G. Assume now that
S has at least two elements k and l. Let G = S\{k, l}.

|∂S f (ω)| = |∂G (∂k∂l f (ω))| ≤ 2|G| · ∥∂k∂l f∥
∞

≤ 2|G| · (b−a).

The proof is complete once we observe that |G|= |S|−2. □

5. EVALUATION OF U3, L3, U4, AND L4

The upper and lower bounds can be improved when |S|= 3.

5.1. Upper bounds.

Theorem 6. Let S ⊆W be a subset with three elements. The first passage percolation time
f satisfies the following inequality for every ω ∈ Ω

∂S f (ω) ≤ (b−a). (33)

Proof. Let S= {k, l,m}. We will make our notation shorter and write σ (θ1,θ2,θ3)(ω) instead
of σ

θ1
k ◦σ

θ2
l ◦σ

θ3
m (ω) for (θ1,θ2,θ3) ∈ {a,b}3. We will first prove that the inequality (33)

is satisfied if

σ
(a,a,a)(ω) ∈ EC

k ∪EC
l ∪EC

m. (34)

If we assume σ (a,a,a)(ω) ∈ EC
k , then the Proposition 3 (a) implies that f (σ (b,a,a)(ω)) =

f (σ (a,a,a)(ω)), i.e. ∂k f (σ (a,a,a)(ω)) = 0. Then,

∂S f (ω) = ∂k f (σ (a,b,b)(ω))−∂k f (σ (a,a,b)(ω))−∂k f (σ (a,b,a)(ω))

≤ (b−a).

We have proved that σ (a,a,a)(ω) ∈ EC
k implies ∂S f (ω) ≤ (b− a). In analogous ways we

prove that the inequality (33) is implied if σ (a,a,a)(ω) belongs to EC
l or EC

m.
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We will now prove that (33) holds if

σ
(b,a,b)(ω) ̸∈ ÊC

k ∩El ∩ ÊC
m. (35)

If σ (b,a,b)(ω) ∈ EC
l , then ∂l f (σ (b,a,b)(ω)) = 0, due to Proposition 3 (a). The derivative

∂S f (ω) becomes

∂S f (ω) = −∂l f (σ (a,a,b)(ω))−∂l f (σ (b,a,a)(ω))+∂l f (σ (a,a,a)(ω))

≤ −0−0+(b−a) = b−a.

Assume now that σ (b,a,b)(ω) ∈ ÊC
k . Proposition 3 (b) implies ∂k f (σ (a,a,b)(ω)) = b− a.

Therefore,

∂S f (ω) = −(b−a)+∂k f (σ (a,b,b)(ω)−∂k f (σ (a,b,a)(ω))+∂k f (σ (a,a,a)(ω))

≤ −(b−a)+(b−a)+0+(b−a) = (b−a).

In analogous way we prove that ∂S f (ω)≤ (b−a) holds if any of the following two inclu-
sions is satisfied:

σ
(a,b,b)(ω) ̸∈ Ek ∩ ÊC

l ∩ ÊC
m or σ

(b,b,a)(ω) ̸∈ ÊC
k ∩ ÊC

l ∩Em.

It remains to prove (33) if we assume that all of the following four conditions are satisfied

σ
(a,b,b)(ω) ∈ Ek ∩ ÊC

l ∩ ÊC
m, (36)

σ
(b,a,b)(ω) ∈ ÊC

k ∩El ∩ ÊC
m, (37)

σ
(b,b,a)(ω) ∈ ÊC

k ∩ ÊC
l ∩Em, (38)

σ
(a,a,a)(ω) ∈ Ek ∩El ∩Em. (39)

• • • • • •k l m

L− L+

γ−(b,a,b)

γ+(b,a,b)

Let γ be a geodesic on σ (a,a,a)(ω). All of the edges k, l, and m must belong to γ .
Without loss of generality, assume that they appear in this order: k, l, m. Let γ(b,a,b) be
a geodesic on σ (b,a,b)(ω). According to (37), the geodesic γ(b,a,b) must pass through l
and must not pass through either of k, m. Let γ−(b,a,b) and γ+(b,a,b) be the sections of
γ(b,a,b) before and after the edge l. The sections γ−(b,a,b) and γ+(b,a,b) are assumed
not to contain the edge l. Let us denote by T−(b,a,b) and T+(b,a,b) the passage times
over the sections γ−(b,a,b) and γ+(b,a,b).

Let L− and L+ be the left and right endpoints of the edge l with respect to γ . More
precisely, on the geodesic γ , the endpoint L− appears before the endpoint L+. There are
two possible orders of L− and L+ on the path γ(b,a,b). The first possibility is that the
endpoint L− appears before L+ on γ(b,a,b). This possibility is shown with solid line in the
picture. The second possibility is that L+ appears before L−. The dashed line represents
the case in which this occurs.
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Let us denote by T− the passage time on the environment σ (a,a,a)(ω) over the segment
of γ between the source and just before reaching the edge l. Denote by T+ the passage
time on σ (a,a,a)(ω) over the segment after the edge l until the sink. The following equations
must hold

f (σ (a,a,a)(ω)) = T−+T++a, (40)

f (σ (b,a,b)(ω)) = T−(b,a,b)+T+(b,a,b)+a.. (41)

In the case when L− appears before L+ on γ(b,a,b), the following two inequalities are
satisfied:

f (σ (a,a,b)(ω)) ≤ T−+T+(b,a,b)+a, (42)

f (σ (b,a,a)(ω)) ≤ T−(b,a,b)+T++a. (43)

If L+ appears before L−, then even stronger relations hold:

f (σ (a,a,b)(ω)) ≤ T−+T+(b,a,b), (44)

f (σ (b,a,a)(ω)) ≤ T−(b,a,b)+T+. (45)

Clearly, (44) and (45) imply (42) and (43) are satisfied. Hence, (42) and (43) hold always.
The relations (40), (41), (42), and (43) imply

f (σ (a,a,b)(ω))+ f (σ (b,a,a)(ω))− f (σ (b,a,b)(ω))− f (σ (a,a,a)(ω)) ≤ 0. (46)

Therefore, the derivative ∂S f (ω) can be bounded in the following way

∂S f (ω) ≤ ∂k f (σ (a,b,b)(ω))−∂k f (σ (a,b,a)(ω)). (47)

Since the derivatives of the first order belong to [0,b− a], the first term on the right-hand
side in (47) is smaller than or equal to (b− a) while ∂k f (σ (a,b,a)(ω)) is greater than or
equal to 0. Therefore, (47) implies (33). □

5.2. Direction switching. In the next proposition we will prove that the direction of the
flow cannot switch if only one edge is flipped from a to b.

Proposition 9. Assume that k and x are two edges and that K1 and K2 are the endpoints
of k. Assume that ω is a fixed environment such that on σa

x (ω) there is a geodesic λa that
contains k and on σb

x (ω) there is a geodesic λb that contains k. Then, the order of K1 and
K2 on λa is the same as their order on λb.

Proof. We will only consider the case k ̸= x. The case k = x is easier, and it will be
discussed in the remark below the proof. Assume the contrary, that K1 appears before K2
on λa, but K2 appears before K1 on λb. Let λ−

a be the section of λa before K1. Let λ+
a be

the section of λa after K2. Define λ
−
b and λ

+
b as the sections of λb that appear before K2

and after K1, respectively.
Without loss of generality, assume that x ∈ λ−

a .

K1

K2

k

λ−
a λ

+
b

λ
−
b λ+

a

• • •

•

x
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The value ωk from {a,b} that is assigned to the edge k is the same on σa
x (ω) and σb

x (ω).
The path λa = λ−

a ∪{k}∪λ+
a is a geodesic on σa

x (ω), while λ−
a ∪λ

+
b is just a path from

the source to the sink. Therefore, we must have

ωk +T (λ+
a ) ≤ T (λ+

b ). (48)

The path λb is a geodesic on σb
x (ω). The path λ

−
b ∪λ+

a does not have to be a geodesic,
hence

ωk +T (λ+
b ) ≤ T (λ+

a ). (49)

If we add (48) and (49), we obtain 2ωk ≤ 0. This is a contradiction. □

Remark. In the case k = x, a slight modification to the proof consists of replacing ωk by a
in (48) and by b in (49). The conclusion a+b ≤ 0 leads to contradiction in this case.

Definition 1. Assume that k, l, and m are three different fixed edges. Edge k is called
direction switching edge with respect to the pair of edges (l,m) on the environment ω if its
two endpoints K1 and K2 satisfy the following condition: On the environment σa

k σa
l σb

m(ω)

there is a geodesic such that K1 is before K2; while on the environment σa
k σb

l σa
m(ω) there

is a geodesic such that K2 is before K1.

Proposition 10. Assume that S = {k, l,m} and that k is a direction switching edge with
respect to (l,m). Let K1 and K2 be the endpoints of k. Let λ be a geodesic on σa

k σa
l σb

m(ω)

such that K1 appears before K2 on λ . Let µ be the geodesic on σa
k σb

l σa
m(ω) such that K2

appears before K1 on µ . Denote by λ− the section of λ between the source and K1 and by
λ+ the section of λ between K2 and the sink. Define µ− and µ+ in analogous ways. Then,
one of the following two mathematical propositions P(λ−,µ+) and P(λ+,µ−) is satisfied

P(λ−,µ+) ≡
{
(l ∈ λ

−) and (m ∈ µ
+)
}
, (50)

P(λ+,µ−) ≡
{
(l ∈ λ

+) and (m ∈ µ
−)
}
. (51)

Proof. Let’s first prove that we can’t have {l,m} ⊆ λ or {l,m} ⊆ µ . Assume the contrary,
that both of l and m belong to λ . The passage times over both λ and µ would not change if
the environment changes from σa

k σa
l σb

m(ω) to σa
k σb

l σa
m(ω). Therefore, both µ and λ are

geodesics on each of the two environments. Let us fix one of the two environments, say
σa

k σa
l σb

m(ω). The path λ−∪µ+ is not a geodesic, hence

T (λ−)+T (µ+)> T (λ−)+T (k)+T (λ+) = T (λ−)+T (λ+)+a.

In an analogous way we obtain

T (µ−)+T (λ+)> T (µ−)+T (k)+T (µ+) = T (µ−)+T (µ+)+a.

If we add the last two inequalities, we obtain 0 > 2a, which is impossible.
Therefore, λ contains exactly one of the edges {l,m} and µ contains the other one. We

can’t have m ∈ λ and l ∈ µ because λ is a geodesic when the value a is assigned to l and
value b is assigned to m; while µ is a geodesic when a is assigned to m and b is assigned
to l. Therefore, l ∈ λ and m ∈ µ .

In order to prove that P(λ−,µ+) or P(λ+,µ−) is satisfied, we must prove that neither
of the following two propositions P(λ−,µ−), P(λ+,µ+) can hold.

P(λ−,µ−) ≡
{
(l ∈ λ

−) and (m ∈ µ
−)
}
, (52)

P(λ+,µ+) ≡
{
(l ∈ λ

+) and (m ∈ µ
+)
}
. (53)
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K1

K2

k

λ− µ+

µ− λ+

• •

• •

•

•

l

m

Assume that P(λ−,µ−) is satisfied. Then, since λ− ∪ µ+ is not a geodesic on the
environment σa

k σa
l σb

m(ω), while λ is, we obtain

T (λ− \{l})+a+T (µ+) > T (λ− \{l})+2a+T (λ+). (54)

Since µ−∪λ+ is not a geodesic on σa
k σb

l σa
m(ω), while µ is, we derive

T (µ− \{m})+a+T (λ+) > T (µ− \{l})+2a+T (µ+). (55)

Adding the inequalities (54) and (55) implies 0 > 2a, which is a contradiction. In an
analogous way we treat the case in which P(λ+,µ+) holds.

Thus, we have proved that one of the mathematical propositions P(λ−,µ−), P(λ+,µ+)
must be satisfied. □

Proposition 11. Assume that S = {k, l,m} and that k is a direction switching edge with
respect to (l,m). Then, the following two inequalities must hold

b ≥ 3a, (56)
∂S f (ω) ≥ 3a−b. (57)

Proof. We will write σ
−→
ξ (ω) instead of σ

−→
ξ

(k,l,m)
(ω). The following two inequalities are

obvious because they follow from ∂z f (ω)≥ 0 for every edge z.

f (σ (b,b,b)(ω))≥ f (σ (a,b,b)(ω)) and f (σ (a,a,b)(ω))≥ f (σ (a,a,a)(ω)). (58)

Let us define λ , µ , λ±, and µ± as in Proposition 10. The same proposition allows us to
assume that l ∈ λ− and m ∈ µ+.

K1

K2

k

λ− µ+

µ− λ+

• • • ••

•

l m

Since λ is a geodesic on σ (a,a,b)(ω), we have

f (σ (a,a,b)(ω)) = T (λ− \{l})+T (λ+)+2a. (59)

In a similar way we obtain

f (σ (a,b,a)(ω)) = T (µ−)+T (µ+ \{m})+2a. (60)
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The passage times over λ− ∪ µ+ on the environments σ (b,a,b)(ω) and σ (b,b,a)(ω) are the
same because the path λ−∪µ+ contains both l and m. We will use T1 to denote these two
passage times, i.e. T1 = T (λ−∪µ+,σ (b,a,b)(ω)).

The passage times over µ− ∪λ+ are also the same on σ (b,a,b)(ω) and σ (b,b,a)(ω) be-
cause µ−∪λ+ contains neither l nor m. We will use T2 to denote these passage times.

The shortest passage times on σ (b,a,b)(ω) and σ (b,b,a)(ω) are bounded by the number
min{T1,T2}. The numbers T1 and T2 satisfy

T1 = T (λ− \{l})+T (µ+ \{m})+a+b, (61)
T2 = T (µ−)+T (λ+). (62)

We now use f (σ (b,a,b)(ω))≤ Tmin, f (σ (b,b,a)(ω))≤ Tmin, (58), (59), and (60) to conclude

∂S f (ω) ≥ 4a+T (λ− \{l})+T (λ+)+T (µ−)+T (µ+ \{m})−2min{T1,T2}
= 3a−b+T1 +T2 −2min{T1,T2}.

It remains to observe that T1 +T2 ≥ 2min{T1,T2}, hence (57) is established.
In order to prove (56) we use that λ is a geodesic on σ (a,a,b)(ω). The path µ− ∪ λ+

cannot have a shorter passage time than λ . Hence, the passage time over λ−∪{k} must be
smaller than or equal to the passage time over µ−, i.e.

T (µ−) ≥ T (λ− \{l})+2a. (63)

Let us now analyze the environment σ (a,b,a)(ω). On this environment, the path µ is a
geodesic, while λ− ∪ µ+ does not have to be a geodesic. Hence, the section µ− ∪ {k}
has shorter passage time than λ−, when the value b is assigned to l and the value a to k.
Therefore,

T (µ−)+a ≤ T (λ− \{l})+b. (64)

The inequalities (63) and (64) imply (56). □

5.3. Lower bounds.

Theorem 7. Let S ⊆W be a subset with three elements. The first passage percolation time
f satisfies the following inequality for every ω ∈ Ω

∂S f (ω) ≥ −(b−a). (65)

Proof. Let S = {k, l,m}. Due to Proposition 11 and 3a− b > −(b− a), we may assume
that none of the edges is direction-switching with respect to the other two.

We will first prove the following implication

σ
(a,a,b)(ω) ̸∈ Ek ∩El ∩ ÊC

m =⇒ ∂S f (ω)≥−(b−a) (66)

The result (66) will follow from the following two

σ
(a,a,b)(ω) ∈ EC

k =⇒ ∂S f (ω)≥−(b−a), (67)

σ
(a,a,b)(ω) ∈ Êm =⇒ ∂S f (ω)≥−(b−a). (68)
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The first step in proving (67) is to express the derivative ∂S f (ω) as

∂S f (ω) =
(

f (σ (b,b,b)(ω))− f (σ (b,b,a)(ω))
)

(69)

+
(

f (σ (b,a,a)(ω))− f (σ (a,a,a)(ω))
)

(70)

−
(

f (σ (b,a,b)(ω))− f (σ (a,a,b)(ω))
)

(71)

−
(

f (σ (a,b,b)(ω))− f (σ (a,b,a)(ω))
)
. (72)

Assume that σ (a,a,b)(ω) ∈ EC
k . The Proposition 3 (a) implies that the term (71) is equal to

0. The terms (69) and (70) are non-negative, and the negative term (72) is bounded below
by −(b−a), which proves (67). In order to prove (68), we start by expressing ∂S f (ω) as

∂S f (ω) =
(

f (σ (b,b,b)(ω))− f (σ (b,b,a)(ω))
)

(73)

+
(

f (σ (a,a,b)(ω))− f (σ (a,a,a)(ω))
)

(74)

−
(

f (σ (b,a,b)(ω))− f (σ (b,a,a)(ω))
)

(75)

−
(

f (σ (a,b,b)(ω))− f (σ (a,b,a)(ω))
)
. (76)

Assume that σ (a,a,b)(ω) ∈ Êm. The Proposition 3 (b) implies that the term (74) is equal to
(b−a). The term (73) is non-negative. The terms (75) and (76) are negative but bounded
below by −(b−a). Therefore, ∂S f (ω) is bounded below by (b−a)−2(b−a) =−(b−a).
This completes the proof of (68).

We proved (66) which states that the inequality ∂S f (ω) ≥ −(b− a) is satisfied unless
σ (a,a,b)(ω) is an element of Ek ∩El ∩ ÊC

m. The analogous statements hold for σ (a,b,a)(ω)

and σ (b,a,a)(ω). Hence, the required bound (65) is proved unless all of the following three
inclusions are satisfied

σ
(a,a,b)(ω) ∈ Ek ∩El ∩ ÊC

m, (77)

σ
(a,b,a)(ω) ∈ Ek ∩ ÊC

l ∩Em, and (78)

σ
(b,a,a)(ω) ∈ ÊC

k ∩El ∩Em. (79)

Hence, it suffices to prove ∂S f ≥ −(b− a) under the conditions (77), (78), and (79). Let
γkl be a geodesic on σ (a,a,b)(ω) that does not contain the edge m. Such geodesic must exist
because we assumed that σ (a,a,b)(ω) ∈ ÊC

m. The geodesic γkl must contain both edges k
and l. We define the geodesics γlm and γkm in analaogous ways. Once the paths γkl , γlm,
and γkm are fixed, we define the relation ≺ on {k, l,m}. We will write k ≺ l if on the path
γkl the edge k appears before the edge l when moving from the source to the sink. There
are two cases:

• Case 1: The relation ≺ does not have the minimum in {k, l,m};
• Case 2: The relation ≺ has the minimum in {k, l,m}.

Case 1. This case is easier to consider. We will prove that ∂S f (ω) > 0 which is stronger
than the required inequality. We may assume that k ≺ l, l ≺ m, and m ≺ k.
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• •m

••
l

• •
k

Lm Rm

Lk Rk

Ll Rl

ekm

ekl

elm

The picture above represents the scenario in which the directions of the flow over the
edges k, l, and m is the same on the environments σ (a,a,b)(ω), σ (a,b,a)(ω), and σ (b,a,a)(ω).
There are alternative situations that we will keep in mind throughout the proof, and these
alternatives are actually easier to consider. We will denote by A↔

m the event when the
direction of the flow over the edge m of γlm is the opposite from the direction of the flow
of γkm. We define the events A↔

k and A↔
l in analogous ways.

Let us denote by ekl the total passage time between the edges k and l on the geodesic
γkl . We define ekm and elm in analogous way. Let us denote by Lk the total passage time on
the geodesic γkl before the edge k. Let Rl be the total passage time on the geodesic γkl after
the edge l. The numbers Lm, Ll , Rk, and Rm are defined in similar ways. Let us emphasize
that none of the previously defined passage times includes the edges k, m, and l.

Therefore, the quantities that we defined are the same on the environments σ
−→
θ (ω) for

all eight choices
−→
θ ∈ {a,b}3. The following identities hold

f (σ (a,a,b)(ω)) = Lk + ekl +Rl +2a, (80)

f (σ (a,b,a)(ω)) = Lm + ekm +Rk +2a, (81)

f (σ (b,a,a)(ω)) ≥ f (σ (a,a,a)(ω)), (82)

f (σ (b,b,b)(ω)) ≥ f (σ (b,b,a)(ω)), (83)

f (σ (b,a,b)(ω)) ≤ Ll +a+Rl , (84)

f (σ (a,b,b)(ω)) ≤ Lk +a+Rk. (85)

The equalities (80) and (81) are due to the definitions of γkl and γkm. The inequalities (82)
and (83) are the consequences of monotonicity.

Let us prove (84). On the environment σ (b,a,b)(ω), we can construct a path δ such that

T (δ ,σ (b,a,b)(ω)) =

{
Ll +a+Rl , if the event A↔

l did not occur,
Ll +Rl , if the event A↔

l did occur.

Let us identify the section of the path γlm before the edge l and call it δ1. It has the passage
time Ll . Let us consider the section of the path γkl after the edge l. This section will be
called δ2. Its passage time is Rl . If the event A↔

l did not occur, then δ = δ1 ∪{l}∪ δ2 is
the path between the source and the sink. If the event A↔

l did occur, then the section of γkl
after the edge l starts at the entrance endpoint of γlm to the edge l. Therefore, δ = δ1 ∪δ2
is a path from the source to the sink on A↔

l . In the first case the passage time is Ll +a+Rl .
In the second case the passage time is just Ll +Rl . In either case, the inequality (84) must
hold.

The inequality (85) is proved in a similar way.
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From (80)–(85) we obtain

∂S f (ω) ≥ (Lk + ekl +Rl +2a)+(Lm + ekm +Rk +2a)

−(Ll +a+Rl)− (Lk +a+Rk)

= ekl +Lm + ekm +2a−Ll . (86)

Let us consider the geodesic γlm on the environment σ (b,a,a)(ω). Let us consider ξ̂ that
consists of the union of the left part of γkm and the right part of γlm. If the event A↔

m did
occur, then ξ̂ is already a path between the source and the sink that includes one endpoint
of m, but not the entire edge m. Its passage time is Lm +Rm. If the event A↔

m did not occur,
then the path ξ = ξ̂ ∪{m} is a path between the source and the sink whose passage time
is Lm +a+Rm. The number Lm +a+Rm is bigger than Lm +Rm. Hence, both on A↔

m and
on its complement, we wound a path between source and the sink whose passage time is
smaller than or equal to Lm +Rm. The path that we found is not a geodesic on σ (b,a,a)(ω)
because of (79). Hence, Lm+a+Rm > Ll +elm+Rm+2a. The last inequality is equivalent
to Lm −Ll > elm +a. The inequality (86) turns into ∂S f (ω)≥ ekl + ekm + elm +3a > 3a >
−(b−a). This finishes the proof in Case 1.
Remark. We proved that ∂S f > 3a. If the number 3a were larger than 2(b− a), which is
the maximal possible value for ∂S f , then Case 1 would not be possible and Case 2 would
be the only one worth considering.
Case 2. We may assume that k is the minimum, i.e. k ≺ l and k ≺ m. Without loss of
generality, we may assume that l ≺ m.

••k • •m

• •
l

Lk Rmekm

ekl elm

Ll Rl

On both γkl and γkm, among the edges from S, the edge k appears the first. It is easy
to prove that the direction of the flow over k is the same on γkl and γkm. Similarly, the
direction of the flow over m is the same on γkm and γlm. However, we can’t rule out that
the direction of the flow over the edge l is the same on γkl and γlm. We will denote by A↔

l
the event that the direction of the flow over the edge l is not the same on γkl and γlm. The
picture above corresponds to the situation on which A↔

l did not occur. The picture below
corresponds to the case in which the event A↔

l happens.
The argument that follows applies to both cases (A↔

l )C and A↔
l .

••k • •m

•
• l

Lk Rmekm

ekl elm

Ll Rl

The sections of the paths γkl and γkm before the edge k must have equal passage times.
Let us denote by Lk the common passage time of these sections. We may modify one of
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the paths γkl and γkm in such a way that the sections before k actually coincide. In a similar
way, the passage times after the edge m on the paths γkm and γlm are equal. We will denote
these passage times by Rm. We define Ll as the passage time over the path γlm before the
edge l; Rl the passage time over γkl after l. We define ekl , elm, and ekm as passage times
over the open intervals (k, l), (l,m), and (k,m) on the paths γkl , γlm, and γkm, respectively.
Let us define the real number θ in such a way that the following holds

ekm = ekl + elm +a+θ . (87)

Such θ is unique as it is a solution to a simple linear equation. We don’t know whether θ

is positive or negative. However, we will be able to prove that θ satisfies the inequality

θ ≤ b−a, (88)

which is sufficient for our needs. On the environment σ (a,b,a)(ω), the minimal passage
time is over the path γkm. This passage time is Lk + ekm +Rm + 2a. On the event (A↔

l )C,
consider the path in which the segment (k,m) is replaced with (k, l)∪{l}∪ (l,m) (i.e., the
section of γkl between k and l, the edge l, and the section of γl,m between l and m). On the
event A↔

l , the passage time over the modified path is Lk + ekl + elm +Rm + 2a, while on
(A↔

l )D, the passage time is Lk + ekl + elm +Rm +2a+b. The latter number is larger than
the former, hence

Lk + ekl + elm +Rm +2a+b > Lk + ekm +Rm +2a,

which, together with (87), implies (88).
Let us define the real numbers θL and θR with the following two identities

Ll = Lk + ekl +a+θL, (89)
Rl = Rm + elm +a+θR. (90)

The numbers θL and θR must belong to the interval (0,b− a]. Let us prove that θL ∈
(0,b−a). We need to prove θL > 0 and θL ≤ b−a.

In order to prove θL > 0, we start by observing that on σ (a,a,b)(ω), every geodesic must
go through k. The path γkl is a geodesic. Let us take the section of this geodesic before
the edge l and replace it with the corresponding section of γlm. On the event (A↔

l )C this
replacement section does not contain l. On A↔

l , the replacement does contain l. We obtain
a path that is not a geodesic because of (77). On the event (A↔

l )C, the change of passage
time must satisfy

0 < Ll −Lk −a− ekl = θL. (91)

On A↔
l a stronger inequality holds: Ll +a > Lk +a+ekl . However, this stronger inequality

implies (91).
Let us now prove that θL ≤ b− a. Consider the environment σ (b,a,a)(ω). The path

γlm is a geodesic. Let us denote by γ
−
kl the section of γkl before the edge l. Let γ

+
lm be

the section of γlm after the edge l. On the event (A↔
l )C, the path γ

−
kl ∪{l}∪ γ

+
lm is a path

from the source to the sink that has passage time Lk + ekl + elm +Rm + 2a+ b. On the
event A↔

l , the union γ
−
kl ∪ γ

+
lm is a path from the source to the sink with the passage time

Lk +ekl +elm+Rm+a+b, which is smaller than Lk +ekl +elm+Rm+2a+b. The passage
time over the geodesic γlm is Ll + elm +Rm +2a. From

Ll + elm +Rm +2a ≤ Lk + ekl + elm +Rm +2a+b,

we obtain Ll ≤ Lk + ekl +b. The last inequality and (89) imply θL ≤ (b−a).
In an analogous way we prove that θR ∈ (0,b−a].
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We can now update our pictures. The next diagram represents the passage times on the
event (A↔

l )C.

••k • •m

• •
l

Lk Rmekl + elm +a+θ

ekl elm

Lk + ekl +a+θL Rm + elm +a+θR

The picture below represent the passage times on A↔
l .

••k • •m

•
• l

Lk Rmekl + elm +a+θ

ekl elm

Lk + ekl +a+θL Rm + elm +a+θR

Since γkl , γlm, and γkm are geodesics on σ (a,a,b)(ω), σ (b,a,a)(ω), and σ (a,b,a)(ω), respec-
tively, we obtain

f (σ (a,a,b)(ω)) = Lk +Rm + ekl + elm +3a+θR, (92)

f (σ (a,b,a)(ω)) = Lk +Rm + ekl + elm +3a+θ , (93)

f (σ (b,a,a)(ω)) = Lk +Rm + ekl + elm +3a+θL. (94)

Due to monotonicity we have

f (σ (b,b,b)(ω)) ≥ f (σ (a,b,b)(ω)). (95)

Let us consider the environment σ (b,a,b)(ω). We will construct a path ζ that has a low
passage time and that will be a useful bound for f (σ (b,a,b)(ω)). Let γ

−
lm be the section

of γlm before l. Let γ
+
kl be the section of γkl after l. On the event (A↔

l )C, we define
ζ = γ

−
lm ∪{l}∪ γ

+
kl . On the event A↔

l , we define ζ = γ
−
lm ∪ γ

+
kl . In each of the cases, the

passage time over ζ is smaller than or equal to Lk+ ekl+ θL+ Rm+ elm+ θR+ 3a. The
passage time over ζ is greater than or equal than the minimal passage time, hence

f (σ (b,a,b)(ω)) ≤ Lk +Rm + ekl + elm +3a+θL +θR. (96)

The minimal passage time f (σ (b,b,a)(ω)) is smaller than or equal to the minimum of the
passage times over the paths γlm and γkm, hence

f (σ (b,b,a)(ω)) ≤ Lk +Rm + ekl + elm +2a+b+min{θL,θ}. (97)

Finally, let us consider the environment σ (a,a,a)(ω). By considering the passage time over
the path γkm, we obtain

f (σ (a,a,a)(ω)) ≤ Lk +Rm + ekl + elm +3a+θ . (98)

Let us construct an alternative path γ ′ on the environment σ (a,a,a)(ω). We replace the
section (k,m) with the sections (k, l) and (l,m) of the paths γkl and γlm. On the event
(A↔

l )C we must also add the edge l in order for γ ′ to connect source to the sink. The
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passage time over γ ′ is Lk +Rm + ekl + elm +3a on (A↔
l )C. On A↔

l , the passage time over
γ ′ is gives us Lk +Rm + ekl + elm +2a. Either way, we have

f (σ (a,a,a)(ω)) ≤ Lk +Rm + ekl + elm +3a. (99)

The inequalities (98) and (99) imply

f (σ (a,a,a)(ω)) ≤ Lk +Rm + ekl + elm +3a+min{θ ,0}. (100)

We now use (92)–(97) and (100) to find the lower bound on ∂S f (ω). Observe that Rk +
Rm+ekl +elm appears equally many times with sign + as with sign −. We can ignore these
terms. Hence,

∂S f (ω) ≥ a−b+θ −min{θL,θ}−min{θ ,0}. (101)

Define F(θ ,θL) = θ − min{θL,θ} − min{θ ,0}. It sufices to prove that F(θ ,θL) ≥ 0.
There are two cases: θ ≥ 0 and θ < 0. If θ ≥ 0, then min{θ ,0} = 0 and F(θ ,θL) =
θ −min{θL,θ} ≥ 0. If θ < 0, then from θL > 0 we have min{θ ,θL}= θ , and F(θ ,θL) =
θ −θ −θ = −θ > 0. This completes the proof of Case 2, which was the only remaining
case that we needed to consider. □

Theorem 8. The first four elements of the sequence (Un) and the first three elements of
the sequence (Ln) are

(U1,U2,U3,U4) = (1,1,1,2); (102)
(L1,L2,L3,L4) = (0,−1,−1,−2). (103)

Proof. The inequalities U1 ≤ 1 and L1 ≥ 0 follow from (30). The bound U1 ≥ 1 can be
proved by constructing an environment ω for which there is an edge k such that ∂k f (ω) =
b− a. This is easy to do: Let ωb be the environment that b to every edge. The equality
∂ j f (ωb) = b− a holds for every edge j on the shortest path between the source and the
sink. The bound L1 ≤ 0 is equally easy to prove – the environment ωa that assigns a to
every edge satisfies ∂k f (ωa) = 0 for every k.

The inequalities U2 ≤ 1 and L2 ≥−1 follow from (31). Proposition 7 implies L2 ≤−1
and U2 ≥ 1.

In addition, Proposition 7 also implies U3 ≥ 1, L3 ≤−1, U4 ≥ 2, L4 ≤−2. Theorem
6 implies U3 ≤ 1 and Theorem 7 implies L3 ≥−1. Therefore, U3 = 1 and L3 =−1. The
first inequality in (9) implies that U4 ≤ U3 −L3 = 2. The second inequality in (9) implies
that L4 ≥ L3 −U3 =−2. □

APPENDIX A. EVALUATIONS OF DERIVATIVES IN EXTREME ENVIRONMENTS

Proposition 12. If A and B are two integers such that 0 ≤ A ≤ B, then
B

∑
k=A

(−1)k
(

B
k

)
=

{
(−1)A ·

(B−1
A−1

)
, A ≥ 1,

0, A = 0.
(104)

Proof. In the case A = 0, the sum on the left-hand side becomes (1−1)B, which is 0.
It remains to consider the case A ≥ 1. Notice that for B− 1 ≥ k the following holds:(B

k

)
=
(B−1

k

)
+
(B−1

k−1

)
.

B

∑
k=A

(−1)k
(

B
k

)
= (−1)B

(
B
B

)
+

B−1

∑
k=A

(−1)k
(

B
k

)
= (−1)B +

B−1

∑
k=A

(−1)k
(

B−1
k

)
+

B−1

∑
k=A

(−1)k
(

B−1
k−1

)
.
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We substitute k′ = k−1 in the second summation.
B

∑
k=A

(−1)k
(

B
k

)
= (−1)B +

B−1

∑
k=A

(−1)k
(

B−1
k

)
−

B−2

∑
k′=A−1

(−1)k′
(

B−1
k′

)
= (−1)B +(−1)B−1 ·

(
B−1
B−1

)
− (−1)A−1 ·

(
B−1
A−1

)
= (−1)A ·

(
B−1
A−1

)
.

This completes the proof of (104). □

Proposition 13. If n and k are non-negative integers, and A an integer such that n+A ∈
[0,k+n], the following holds

min{k,n+A}

∑
i=max{0,A}

(
k
i

)
·
(

n
n+A− i

)
=

(
n+ k
n+A

)
. (105)

Proof. This is a famous cats-and-dogs identity. Assume that there are k cats and n dogs
and that we want to count the number of ways to choose a committee consisting of n+A
animals. One obvious way to count committees is to ignore the differences between cats
and dogs. The number becomes

(n+k
n+A

)
. However, we can also do a counting by doing the

case-work. If we denote by i the number of cats in the committee, then the number i must
range from max{0,A} to min{k,n+A}. The number of (n+A)-member committees with
exactly i cats is

(k
i

)
·
( n

n+A−i

)
. □

Proof of Theorem 4. Let L be the total number of edges on each of the paths P1 and P2.
Assume, first, that β1 −β2 ≥ m2. The path P2 is a geodesic on every environment because
the passage time over P1 is larger than or equal to β1, while the passage time over P2 is
smaller than or equal to La+(m2+β2) · (b−a). Hence, if i2 of the edges from C2 have the
value b, then the shortest passage time is equal to La+(i2 +β2)(b−a). Hence,

∂S f (ω) = (b−a) ·
m1

∑
i1=0

m2

∑
i2=0

(−1)m1−i1+m2−i2 ·
(

m1

i1

)
·
(

m2

i2

)
· (i2 +β2)

= (b−a) ·

(
m1

∑
i1=0

(−1)m1+i1

(
m1

i1

))
·

(
m2

∑
i2

(−1)m2+i2 ·
(

m2

i2

)
· (i2 +β2)

)
.

The first term of the product is equal to (1−1)m1 , hence ∂S f (ω)= 0. The case β2−β1 ≥m1
is analogous.

We now treat the case in which both β1 −β2 ≤ m2 −1 and β2 −β1 ≤ m1 −1. Assume
that i1 of the edges from C1 and i2 edges from C2 are assigned the value b. The passage time
over the path P1 is La+(b−a)(i1+β1). The passage time over P2 is La+(b−a)(i2+β2).
Therefore, the derivative satisfies

∂S f (ω) = (b−a) · (−1)m1+m2 ×

×
m1

∑
i1=0

m2

∑
i2=0

(−1)i1+i2 ·
(

m1

i1

)
·
(

m2

i2

)
·min{i1 +β1, i2 +β2}.

Let us express the derivative as ∂S f (ω) = (b−a) · (−1)m1+m2 · (S1 +S2), where the sum-
mation S1 is carried over the pairs (i1, i2) for which i1 +β1 ≤ i2 +β2, and the summation
S2 is over the pairs (i1, i2) for which i1 +β1 ≥ i2 +β2 +1.
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If i1 +β1 ≤ i2 +β2, then i1 ≤ i2 +β2 −β1 ≤ m2 +β2 −β1. Therefore, the number S1
satisfies

S1 =
µ1

∑
i1=0

(−1)i1 · (i1 +β1) ·
(

m1

i1

)
·

m2

∑
i2=τ2(i1)

(−1)i2 ·
(

m2

i2

)
, where (106)

µ1 = min{m1,m2 +β2 −β1} and
τ2(i1) = max{0, i1 +β1 −β2}.

In a similar way we find that S2 satisfies

S2 =
µ2

∑
i2=0

(−1)i2 · (i2 +β2) ·
(

m2

i2

)
·

m1

∑
i1=τ1(i2)

(−1)i1 ·
(

m1

i1

)
, where (107)

µ2 = min{m2,m1 +β1 −β2 −1} and
τ1(i2) = max{0, i2 +β2 −β1 +1}.

The summation S1 will now be broken in two: The first, S11 contains the terms that cor-
respond to i1 in the range [0,β2 − β1]. If β2 − β1 < 0, then there is no summation S11.
The summation S12 contains the terms i1 in the range [β2 −β1 +1,µ1]. We will prove that
S11 is 0. The summation S12 will have simple lower bound τ2(i1) that is always equal to
i1 +β1 −β2. The number S11 is obviously 0 if β2 < β1. If β2 ≥ β1 and i1 ≤ β2 −β1, then
i1 +β1 −β2 ≤ 0. This implies that τ2(i1) = 0. The number S11 becomes

S11 =
β2−β1

∑
i1=0

(−1)i1 · (i1 +β1) ·
(

m1

i1

)
·

m2

∑
i2=0

(−1)i2 ·
(

m2

i2

)
The inner summation ∑

m2
i2=0(−1)i2 ·

(m2
i2

)
is equal to 0 because it is equal to (1 − 1)m2 .

Therefore, S11 = 0 and S1 = S12, i.e.

S1 =
min{m1,m2+β2−β1}

∑
i1=max{0,β2−β1+1}

(−1)i1 · (i1 +β1) ·
(

m1

i1

)
·

m2

∑
i2=τ2(i1)

(−1)i2 ·
(

m2

i2

)
. (108)

The equality (104) transforms (108) into

S1 =
min{m1,m2+β2−β1}

∑
i1=max{0,β2−β1+1}

(−1)i1 · (i1 +β1) ·
(

m1

i1

)
· (−1)τ2(i1) ·

(
m2 −1

τ2(i1)−1

)

= (−1)β1−β2 ·
min{m1,m2+β2−β1}

∑
i1=max{0,β2−β1+1}

(i1 +β1) ·
(

m1

i1

)
·
(

m2 −1
i1 +β1 −β2 −1

)
. (109)

We treat the summation S2 in a similar way. As before, S21 gathers the terms for which
i2 is in the range [0,β1 −β2 −1]. Of course, if β1 −β2 −1 < 0, then there is no summation
S21. The summation S22 contains the terms for which i2 is in the range [β1 −β2,µ2]. It is
straightforward to prove that S21 is 0. Therefore,

S2 = (−1)β2−β1+1 ·
min{m2,m1+β1−β2−1}

∑
i2=max{0,β1−β2}

(i2 +β2) ·
(

m2

i2

)
·
(

m1 −1
i2 +β2 −β1

)
. (110)

The summations S1 and S2 have the opposite signs. The summation S1 has the term (i1 +
β1) that makes it possible to split the summation into two simpler ones T11 and T12. In a
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similar way we split S2 into T21 and T22.

S1 = (−1)β1+β2 · (T11 +T12), S2 =−(−1)β1+β2 · (T21 +T22), where (111)

T11 =
min{m1,m2+β2−β1}

∑
i1=max{0,β2−β1+1}

i1 ·
(

m1

i1

)
·
(

m2 −1
i1 +β1 −β2 −1

)
, (112)

T12 = β1 ·
min{m1,m2+β2−β1}

∑
i1=max{0,β2−β1+1}

(
m1

i1

)
·
(

m2 −1
i1 +β1 −β2 −1

)
, (113)

T21 =
min{m2,m1+β1−β2−1}

∑
i2=max{0,β1−β2}

i2 ·
(

m2

i2

)
·
(

m1 −1
i2 +β2 −β1

)
, (114)

T22 = β2 ·
min{m2,m1+β1−β2−1}

∑
i2=max{0,β1−β2}

(
m2

i2

)
·
(

m1 −1
i2 +β2 −β1

)
. (115)

The summations T11 and T21 can be simplified by first observing that the summations can-
not ever have a term corresponding to the index 0. Then for i1, i2 ̸= 0, we use i1 ·

(m1
i1

)
=

m1 ·
(m1−1

i1−1

)
and i2 ·

(m2
i2

)
= m2 ·

(m2−1
i2−1

)
. After using these identities, we can shift the indices

i1 and i2 by 1 and obtain

T11 = m1 ·
min{m1−1,m2+β2−β1−1}

∑
i1=max{0,β2−β1}

(
m1 −1

i1

)
·
(

m2 −1
i1 +β1 −β2

)
, (116)

T21 = m2 ·
min{m2−1,m1+β1−β2−2}

∑
i2=max{0,β1−β2−1}

(
m2 −1

i2

)
·
(

m1 −1
i2 +1+β2 −β1

)
. (117)

In each of (116), (113), (117), and (115), we apply
(n

k

)
=
( n

n−k

)
to the second binomial

coefficient. The sums turn into

T11 = m1 ·
min{m1−1,m2+β2−β1−1}

∑
i1=max{0,β2−β1}

(
m1 −1

i1

)
·
(

m2 −1
m2 −1− i1 −β1 +β2

)
, (118)

T12 = β1 ·
min{m1,m2+β2−β1}

∑
i1=max{0,β2−β1+1}

(
m1

i1

)
·
(

m2 −1
m2 − i1 −β1 +β2

)
, (119)

T21 = m2 ·
min{m2−1,m1+β1−β2−2}

∑
i2=max{0,β1−β2−1}

(
m2 −1

i2

)
×

×
(

m1 −1
m1 −1− i2 −1−β2 +β1

)
, (120)

T22 = β2 ·
min{m2,m1+β1−β2−1}

∑
i2=max{0,β1−β2}

(
m2

i2

)
·
(

m1 −1
m1 −1− i2 −β2 +β1

)
. (121)
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We apply (105) to each of (118), (119), (120), and (121).

T11 = m1 ·
(

m1 +m2 −2
m2 −1+β2 −β1

)
, (122)

T12 = β1 ·
(

m1 +m2 −1
m2 +β2 −β1

)
, (123)

T21 = m2 ·
(

m1 +m2 −2
m1 +β1 −β2 −2

)
= m2 ·

(
m1 +m2 −2
m2 +β2 −β1

)
, (124)

T22 = β2 ·
(

m1 −1+m2

m1 −1+β1 −β2

)
= β2 ·

(
m1 +m2 −1
m2 +β2 −β1

)
. (125)

From (122) and (124) we obtain

T11 −T21 =
(m1 +m2 −2)! · ((m1 +m2)(β2 −β1)+m2)

(m2 +β2 −β1)! · (m1 +β1 −β2)!

=

(
m1 +m2 −1
m2 +β2 −β1

)
· ((m1 +m2)(β2 −β1)+m2)

m1 +m2 −1
. (126)

We now use S = (b−a) · (−1)m1+m2 · (S1 +S2), (111), (126), (123), and (125) to obtain

(−1)m1+m2

b−a
S = (−1)β1+β2 · (T11 +T12 −T21 −T22)

= (−1)β1+β2 ·
(

m1 +m2 −1
m2 +β2 −β1

)
×

×
(
((m1 +m2)(β2 −β1)+m2)

m1 +m2 −1
+β1 −β2

)
= (−1)β1+β2 ·

(
m1 +m2 −1
m2 +β2 −β1

)
· m2 +β2 −β1

m1 +m2 −1
. (127)

The equation (127) implies (27) due to
(n

k

)
· k

n =
(n−1

k−1

)
. □
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