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ABSTRACT. We introduce and study higher-order derivatives of first-passage percolation
with respect to the environment. One of our main results is a generalization of the Ben-
jamini—Kalai-Schramm-Talagrand variance bound, expressed in terms of the L?-norms of
these higher-order derivatives. We analyze the structure of these derivatives and compile a
collection of related results. Several of these are sufficiently elementary to allow the use of
algorithms and computer programs that automatically generate proofs of inequalities that
would otherwise be intractable by manual methods.

1. INTRODUCTION

1.1. Definition of the model. The first-passage percolation model was introduced by
Hammersley and Welsh in [23]. Fix two positive real numbers a < b and a positive real
number p € (0,1). Consider the graph whose vertices are elements of Z¢ N [—2n,2n]?
(with d > 2), where two vertices (xi,...,x;) and (y1,...,y,) are connected by an edge if
et =i+ +xa —ya| = 1.

Let W, denote the set of edges of this graph. The sample space is defined as Q, =
{a,b}". Each edge e of the graph is independently assigned a passage time of either a or
b, with probabilities P(a) = p and P(b) = 1 — p.

For a fixed environment @ € €, and a path Y consisting of adjacent edges, the passage
time 7' (Y, ®) is defined as the sum of the values assigned to the edges of y. For two fixed
vertices u and v, the passage time f(u, v, ®) is the random variable defined as the minimum
of T(y, ®) over all paths 'y connecting u to v.

When v is fixed, we will also use the notation f,(®), f,, or simply f, in place of
F(0,nv, ©).

For some of our results, we will only work on a simplified model from [12] that has
more symmetry and fewer technical challenges: the percolation is considered on the torus
7&. We will use superscript T and write f7(®), f7, or f* to emphasize when we are
working on this simplified torus model. Formally, a d-dimensional torus is a graph whose
vertices are elements of Z¢ and two vertices u and v are connected by an edge if and only if
there is a coordinate k € {1,2,...,d} such that u;y — v = £1 (mod n). The set of admissible
paths I" consists of all paths that wrap around the torus in the direction x;. Hence, the path
(8,v1,...,vm,e) belongs to the set I if it is a path in the graph and if the starting and ending
vertices s and e have all the coordinates the same except for the first coordinate. Their first
coordinates are s; = 0 and e; = n— 1. The random variable f;! is defined as the minimum
of the passage times among all paths Y that consist of adjacent edges and that wrap around
the torus exactly once in the direction x;. The function f! is defined as

fil@) = min{T(y,0):yeT} (D
A path 7y is called geodesic if the minimum f,(®) (or f¥, depending on which problem we
are studying) is attained at ¥, i.e. if f,(®) = T(y, ®).
1
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1.2. Definition of environment derivatives. If we denote by W, the set of all edges, then
the sample space is Q, = {a,b}"*. We will often omit the subscript n when there is no
danger of confusion. For each edge j and each w € Q, we define qu(w) as the outcome
from  whose passage time over the edge j is changed from ®; to a, regardless of what
the original value @; was. The operation 0';’ is defined in an analogous way. Formally, for

0 € {a,b}, we define 6]5 1 Q — Q with

o
@] = {g”‘ kij{ @

If ¢ : Q — R is any random variable, then the first order environment derivative d;¢ is the
random variable defined as

dip = (po(yj'.’—(poaf. (3)

For two distinct edges i and j, we will give the name second order environment deriva-
tive to the quantity d;d;¢. In general, if S is a non-empty subset of W, the operator ds¢ is
defined recursively as

ds@ = dgy;)(9;9), 4)

where j is an arbitrary element of S. The definition (4) is independent on the choice of j,
since a simple induction can be used to prove that for S = {sy,...,sy}, the following holds

as(p = Z Z (_])lu(91)+"'+1a(9m)q)oGsel] O”.OGS?:,H' (5)
0,€{ab}  Onc{ab}

The function 1, : {a,b} — {0, 1} in (5) assigns the value 1 to g and 0 to b.

1.3. Variance bounds. The variances of f, and fF can be bounded in terms of L> norms of
environment derivatives. The results of Talagrand [34] and Benjamini, Kalai, and Schramm
[12] show how inequalities with first order environment derivatives lead to bounds on the
variance of the form var(f,) <C- @ and var(f7) <C- @, for some constant C. We will
prove the following generalization of Talagrand’s inequality.

Theorem 1. Let f be a random variable on Q. For every integer k > 1, there exists a real
constant C and an integer ngy such that for n > ny, the following inequality holds

var(f) < Y (p(1—p)M(E [ s])?

MCW,1<|M|<k

19113

9]z \*
MW M=K 1170 1+ (log {26442

+C- (6)

where ||g||p is the LP-norm of the function g defined as

1/p
lell = ( [, lePar) = @lep)

For k = 1, the inequality (6) turns into Talagrand’s Theorem 1.5 from [34].

The pair of edges (i, j) is called convoluted on the outcome @ € Q, if J;d; f(®) # 0. The
following consequence provides an upper bound for the variance in terms of the expected
number of convoluted pairs in the torus model.
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Corollary 1. If N, is the random variable that represents number of convoluted pairs
of edges, then there exist constants C and C and an integer no such that for n > ny, the
variance of f* on torus satisfies

L2 1u S5 _ » EIN
(logn)> = " (logn)*’
The conjectured upper bound for the variance in first-passage percolation is C - n*%,

where ) is an exponent that depends on the dimension. Current predictions suggest that
X is % in the two-dimensional case [6]. A bound of y < % was established by Kesten in

var(ff) < C (7

1993 [27], and to date, there is no formal proof that ¥ is strictly less than % In dimensions
higher than two, even conjectural values for } remain unclear. According to [6], it is widely
believed that ) remains strictly positive in all dimensions, though it tends to 0 as d — oe.

It is worth noting that the value y = % was rigorously established by Johansson in a
related model known as the totally asymmetric simple exclusion process (TASEP) [26].
The TASEP model belongs to a class of exactly solvable models that can be analyzed
using techniques from random matrix theory. In this setting, a central limit theorem has
been proven, with the limiting distribution given by the Tracy-Widom distribution for the
largest eigenvalue [35].

The best current variance bound for first-passage percolation is C - @. It is obtained
by Benjamini, Kalai, and Schramm [12]. Their approach relies on Talagrand’s inequality
[34]. After applying the inequality, they use symmetries of the first-passage percolation
models.

Our Theorem 1 generalizes Talagrand’s inequality in the sense that the latter becomes
a special case when k = 1. Moreover, in the torus model, we improve the denominator
to (logn)? in the Corollary 1, at the cost of introducing the term E[N;] in the numerator.
Currently, we are unable bound E[N;] by n; hence, our result does not improve upon the
best-known bound of 12=. We conjecture that E[N>] and the L? norms ||dys f]|2 are small—-
especially in dimensions d > 3, where the decay could potentially be exponentially fast.
However, these quantities remain difficult to analyze at present.

A complete understanding of the environment derivatives is equivalent to a complete
understanding of the variance. We will see later in (53) that

var(f) = Y (p(1—p)M(E[oms]).

MCW, M40

The equation above is not particularly surprising—it is the Parseval’s identity for the
Fourier expansion of the variance in which the coefficients are expressed in terms of en-
vironment derivatives. Talagrand, as well as Benjamini, Kalai, and Schramm, have previ-
ously employed the Fourier expansion of variance, but skillfully avoided dealing with the
coefficients directly by relying on clever bounding techniques.

Thus, the ultimate goal is to control the [%-norms of the environment derivatives dyy £,
as these norms are directly tied to the variance. At present, however, we are unable to
effectively bound these L?-norms.

This paper makes progress in analyzing the environment derivatives by establishing
certain almost sure bounds. It also derives algebraic results concerning these derivatives,
which allow us to bypass intuitive representations—representations that become increas-
ingly difficult to construct when the sets M contain more than a few elements.
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1.4. Almost sure bounds on environment derivatives. We start with definitions of two
sequences. The first one will be the sequence (%,%,...) of the most optimal upper
bounds. The number %; is defined as the most optimal upper bound on the k-th order
environment derivative, i.e.

1

62/]( = mmax{asfn(a)):neN7San,|S‘:k,w€Qn}. (8)

The sequence (£1,-%,...) of most optimal lower bounds is defined in an analogous way.
1

L = mmin{c?sf,,(a)):neN,SQWn,|S|:k,a)€Qn}. 9)

The re-scaling factor b — a is included to make the numbers %} and .Z}, constant and inde-
pendent on a and b.

Theorem 2. The first four values of (%) and (£;) are given in the table below.

k 1T 2] 3] 4
| 1] 1| 2] 3 (10)
Z o -1 —1| —2

Theorem 3. The sequences (%) and (%) satisfy

U U~ and Ly > L — U, (11)
forall k > 1. Moreover, for all k > 2,
U <22 and | L] <22 (12)
Also, there exists kg € N such that for all integers k > kg the following holds
U>V3 and 14| >3 (13)

Theorem 3 implies that (%) and (%) grow exponentially in k. The bounds (12) and
(13) are somewhat generous, and they can be improved, for example, by using (11). In this
paper, we focused on obtaining the precise values for %} and %, for small values of k. The
bounds (12) and (13) are simple enough, so we decided to leave them as they are and point
out that substantial improvements are very likely to happen in the future.

At the moment, the precise values of the elements of the sequences (%) and (.%;) are
difficult to determine for large k. The equalities %) = 1 and .} = 0 were trivial; %5 = 1,
U; =2, and % = —1 follow from (11) and (12) without much effort.

The lower bound .43 = —1 was of moderate complexity and was derived in Theorem
13. The upper bound %4 = 3 then followed easily from (11) and .43 = —1.
The lower bound .%; = —2 was obtained via a computer-assisted proof, and this work

is presented in [30]. We anticipate that future research will extend these techniques to
produce computer-assisted proofs for higher-order bounds as well.

1.5. Methods used in proofs and overview of literature. The proof of Theorem 1 relies
on the Beckner—Bonami inequality from [10] and [13], similar to Talagrand’s original ap-
proach. In our proof, we clearly separate probabilistic components from algebraic manip-
ulations and extend the variance decomposition to gain higher powers in the denominator.
The logarithmic improvement in the denominator is more transparent in our presentation
due to this clearer separation between probability and algebra.

We modified Talagrand’s method by generalizing his operator A; (denoted p; in [12]).
Talagrand’s operator is defined as

Aif(0) = f(oi(w)) - f(),
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where o0;(®) denotes the environment in which the passage time over edge i is changed
from its original value. Our first-order environment derivative d; is defined as

dif (@) = f(o7 (@) — f(of ().

This seemingly small change leads to significant improvements in clarity, particularly in
identifying edges that belong to geodesics and those for which the environment derivatives
are nonzero. In addition, the integration-by-parts formulas become much simpler with
the operator d;, as it is a more natural extension of the classical derivative than A;. If the
denominator (b — a) were introduced to normalize the derivative, the ordering of terms
would align with the numerator f o Gib — foof of d;f.

We generalize this environment derivative to higher orders, which allows us to make
a tradeoff after applying the Beckner—-Bonami inequality. This tradeoff improves the de-
nominator from logn to (logn)*, but at the cost of introducing the L?-norms ||dy f||3 of
the higher-order environment derivatives into the numerator. As mentioned earlier, these
L?-norms are not easy to control. We hope that other researchers will explore the theory
of environment derivatives further, as they show promise for deeper understanding and
improved bounds.

When the edge passage times are supported on {a,b}, as in the model studied in this
paper, geodesics may not be unique. It is expected that there will be numerous sufficiently
disjoint geodesics, which would imply a small number of influential edges. This, in turn,
could make it easier to obtain bounds on N,. The study of geodesics has produced several
important results and highly credible conjectures. Notably, as the size of the environment
grows, at least two infinite geodesics are expected to emerge [24]. Infinite geodesics are
also known to coalesce with high probability [3], [33], [28].

If the edge passage times are continuously distributed, geodesics are unique, and the
event A; = {J;f # 0} coincides with the event that edge i is essential-that is that is, ev-
ery geodesic passes through i. Benjamini, Kalai, and Schramm studied the discrete case
and encountered a major challenge: proving that the probability of A; decays as n s If
the event A; occurs, we say that the edge i is influential. The authors of [12] proposed a
simpler problem: prove that P(A;) — 0. This problem was resolved recently. In the con-
tinuous setting, we now have bounds of the form P(4;) < Cn~%. The first such results
appeared in [20], were strengthened in [1] (which removed differentiability assumptions),
and culminated in polynomial bounds in [22].

Over the past 20 years, the Benjamini-Kalai-Schramm trick has been successfully used
to bound variances in numerous problems, many now categorized as superconcentration
problems [15] or part of the Kardar—Parisi—Zhang (KPZ) universality class [2], [17]. First-
passage percolation models can also be viewed as extreme cases of random polymers in
the zero-temperature limit [36].

In [11] and [19], the @ variance bound was extended to a large class of distributions.
The exponent y, discussed earlier, is called the fluctuation exponent. It is related to the
transversal exponent &, defined as the number for which C-nS is the maximal distance
from the geodesic to the straight line between the starting and ending point. The exponents
x and & satisfy the KPZ scaling relation y = 2& — 1. The inequality y > 2& — 1 was proved
in [31], while the reverse inequality ¥ < 2& — 1 was first shown in [14], then generalized
and simplified in [5]. These scaling exponents are closely tied to the asymptotic shape of
the balls in the first-passage percolation metric; see [18] and [16].

The models we study in this paper are discrete. However, there have been successful
generalizations to models where graphs consist of points scattered in Euclidean space [25].
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Scaling relations and large deviation estimates have been established for both these spatial
models and traditional lattice models in [8] and [9]. In a broad class of first-passage per-
colation models, the limit shape has been shown to be differentiable [7]. These problems
become even more continuous when framed in terms of random Hamilton-Jacobi equa-
tions. For generalizations of the law of large numbers and central limit theorems in this
context, see [32], [4], and [21]. Variance bounds of the order @ have also been obtained
in this continuous PDE setting in [29].

2. ESSENTIAL AND INFLUENTIAL EDGES

We will distinguish four categories to which an edge of the graph can belong. These
categories may overlap but are conceptually distinct. Most edges will not belong to any of
them.

Definition 1. An edge j € W, is called essential on the environment @ if every geodesic
passes through j. We will denote by E; the event that the edge j is essential.

Definition 2. An edge j € W, is called semi-essential on the environment @ if at least one
geodesic passes through j. We will denote by E; the event that the edge j is semi-essential.

Definition 3. An edge j € W, is called influential if d; f(®w) # 0. We will denote by A the
event that the edge j is influential.

Definition 4. An edge j € W, is called very influential if d; f(®) = b —a. We will denote
by A j the event that the edge j is very influential.

Since the passage times across edges have a discrete distribution, there may be multiple
geodesics between two fixed endpoints. We will show that, in general, the four categories
defined above are distinct. Later in this section, we will prove that the general relationship
between the events A, A}, E;, and E; is captured by the Venn diagram below.

¢ O

The inclusion E; C A; is the most important of all of the inclusions from the diagram.
Although E; is subset of A;, we will prove later in Theorem 6 that the two events have
comparable probabilities, i.e. P(A;) <IP(E;)/p. It is natural to conjecture that all of the
events E;, A}, E ; and A ; have comparable probabilities. We didn’t need this full result in
our paper, and the proof does not look obvious. Here is the formal conjecture.
Conjecture 1. There exists a constant C independent on n such that

P(Aj) < C-P(4)),
P(E;)) < C-P(E;), and
P(E) < C-P(A)).

A

A

Most research involving percolation models, where passage times have discrete distri-
butions, has had to address these distinct categories of edges. Handling this distinction has
often introduced technicalities that researchers needed to overcome. This section shows the
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similarities and differences among the various edge categories and summarizes their rela-
tionships. In our research, the clarifications provided by this section not only simplified
the proofs but also served an additional purpose: they enabled us to identify fundamental
relationships that were easiest to implement in computer-assisted proofs.

The results of this section apply to both f an f7; we will only present them for f. We
will start with a proposition whose proof we will omit because it is straightforward.

Proposition 1. For every i # j, every a, B € {a,b}, and every random variable ¢,

o%oc? = o (14)
G,-"‘oojﬁ = G]ﬁoGia; (15)
(dip)oc = dig; (16)
didip = 0; a7
9idjp = d;0i¢; (18)

O log—q = @00’ ly-qa. (19)

The next theorem is one of the few results that require a combinatorial analysis of
geodesics. The obtained algebraic relationships among Ej, A;, £}, and A, together with
some general results from set theory, imply all inclusions in the Venn diagram presented
above.

Theorem 4. The events Ej, Aj, E;, and A; satisfy

Aj = (o)) (E)): (20)
A; = (o)) NE)). Q1)

Proof. We will first prove that {d;f # 0} C (6}‘)’1 (Ej). Assume the contrary, that there
is o that satisfies d; f(®) # 0, but 6¢(@) ¢ E;. There is a geodesic ¥ on o7/(®) that does
not pass through j. The value f(0f(®)) satisfies

flof(w)) = T(r,0{()=T(y,07(0)) > f(c](0)).

The monotonicity of f in each coordinate implies f(of(®)) < f (611-7 (w)). Hence, we
obtained f(of(®)) = f(GJl?((D)). This contradicts the assumption d; /(@) # 0.

We will now prove that (Gj’)_l(Ej) C {d;f # 0}. Assume that ® € (Gf)_l(Ej). We
need to prove that f(GJl-’((D)) > f(o](w)). Let y be a geodesic on G]’?(a)). There are two

possibilities: j € yand j ¢ 7. In the case j € 7, we have
floj(w)) = T(v,07(0))=(b—a)+T(y,0{(0)) > (b—a)+f(o](0))
> f(of(®)).
In the case j ¢ ¥, the following holds

flo}(@)) = T(r,07(0)=T(y,0{(0)).

However, since o7 (@) € E; and j ¢ v, the path ¥ cannot be a geodesic and T'(y, o (@)) >

h .
f(of(®)). We are allowed to conclude that f(o7(®)) > f(of(®)). This completes the

proof of (20).
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—1 A A
We will now prove (21). Assume first that © € (Gf) (Ej). Then, Gjl»’(a)) € Ej, and

there is a geodesic ¥ on Gjl?(a)) that passes through j.

fol(@) = T(r.0l(0)=T(r.0{(@)+(b—a)
> f(of(®)+b—a.

It remains to observe that f(Gjb((D)) < f(o}(®)) +b—a. Therefore, ® € Aj. We proved
—1 R R
that (oj?) (E)) CA;.
Assume now that @ € A;. We need to prove that 0']’?((») € E;. Let us consider o/ ().
If there is a geodesic & on ¢ () that does not pass through j, then

flof(w)) = T(8,0{(w))=T(8,07(w)) = f(0}(@)),
which would imply that 9;f(@) = 0 and contradict the assumption ® € A;. Hence, every
geodesic on o/ (@) must pass through j and 67 (®) € E;. Let y be a geodesic on 6 (®).
Since we assumed that @ € A, we have
flo}(@)) = f(of(@))+(b—a)=T(y,0(w))+(b—a)
= T(v.0}()).

This means that 7y is a geodesic on 6]}7 (w). Since y passes through j, we proved that
ol (w) € E;. O

The next proposition will be frequently used by computer algorithms that are proving

inequalities involving environment derivatives. It is a simple consequence of equalities
(20) and (21).

Proposition 2. The following two implications hold for every @ € Q.
(@) If 6%(w) € E, then f(o!(®)) = f(o%(®));
(b) If 67(w) € Ej, then f(0?(0)) = f(6¢(®)) + (b—a).

Proof. Part (a) follows directly from (20). If we assume G]‘?( [0)RS Ef then
_ _ c
o (o9) " (ES) = (o) (E;) = 4G
Similarly, part (b) is a direct consequence of (21). U

The functions o} and Gib are idempotent (a function ¥ : R — R is idempotent if yo y =
y) and they satisfy of' o Gl-h = o} and Gf’ oo} = Gib . These algebraic properties, together
with E; C E i A i € Aj, (20), and (21) will have the following algebraic consequence:
E; CAj and A i C E ;. These inclusions (and several more results) will follow from the
following general properties of images and pre-images of idempotent functions, whose
proofs are left for the Appendix A.

Proposition 3. If v : R — R is an idempotent function, then the set of its fixed points is
equal to its range, i.e.

V(R) = {xeR:y(x)=x}. (22)

Proposition 4. Assume that W : R — R and & : R — R are two idempotent functions that
satisfy wo & = y. If Q is any subset of R, then

v(v HQ)NER) =y (v Q) =0NyR) =y "(Q)NY([R). (23)
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Proposition 5. Assume that w* : R — R and w” : R — R are two idempotent functions
that satisfy w*(R)Uw?(R) = R. If E and E are two subsets of R that satisfy E C E and

(v") "1 (E) C (y*)"1(E), then

E < (y)(E), 24)
W) '(E) < E (25)
The equation (22) applied to o7 and GJ’? transforms into
o/ (Q) ={wj=a} and o} (Q)={w;=>b} (26)
We will apply the equation (23) to idempotent functions qu and G]b that satisfy 0']‘? ) Gjb =

a b a b
. e} . = .
O'] andcj G] GJ.

Proposition 6. For every j € W, the events Ej, E j» Aj, and A ; satisfy

oj(4))=0j(A;n{o;=b}) =A;n{w;=a} =E;n{w;=a};  27)

GJb(A]) :G]b(Ajﬂ{(l)j :a}) :Ajﬂ{(l)j:b} :Ejﬂ{(l)j :b}- (28)

Proof. The given equalities are direct consequences of (14), (20), (21), (23), and (26). O
Theorem 5. For every j € W, the events E;, E,-, Aj, and AJ- satisfy

E;CE; A;jCAj; (29)
E;CA;; and 30)
A; CE;. (31)

Proof. The inclusions (29) are obvious, while the inclusions (30) and (31) follow from
(24) and (25). O

In some special cases (one of whichis a, b € N, b = a+ 1), the events A jand A; are the
same, and the relationships between £, A ;, and E ; are simpler.

Proposition 7. Assume that the real numbers a and b are such that there are no integers
kq and ky, for which ak, + bk, belongs to the open interval (0,b — a). Then,

E;CA;=A;CE;
Proof. This is a trivial consequence of E; CAj, A; :Aj, and Aj CE;. U

Proposition 8. For sufficiently large n, the following sets are non-empty: E i\Aj, Aj \Ej,
and A\ Ej. If there exist integers k, and kj such that ak, + bkj € (0,b — a), then for
sufficiently large n, the sets A ; \E jand E; \A j are non-empty.

Proof. There are trivial examples that establish £;\ A; # 0 and A; \ E; # 0. We will
construct them on the torus model. The examples can be easily extended to the general
first-passage percolation. Let @, be the environment that assigns the value a to every edge.
It is easy to prove that @, € E i\ Aj, for every edge j that connects the vertex X with
the vertex 7 and satisfies x; —y; = £1. Take now the environment @, whose all edges
are assigned the value b. Then, every edge between ¥ and 7 that satisfies x; —y; = %1
is very influential. None of the edges is essential, hence @, € A;\ E;. These two trivial
examples @, and @, showed that £;\ A; and A \ E; are non-empty.

In Section 4, we will prove that the remaining sets are non-empty. The relation A ;\ E; #
0 is proved in Proposition 20. The Proposition 21 proves that A ; \E jand E; \A j are non-
empty if there exist integers k, and k;, such that ak, + bk, € (0,b—a).
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Proposition 9. Assume that @ € E;. A path y is a geodesic on @ if and only if it is a
geodesic on 0§ (®).

Proof. First we will prove that every geodesic on @ is also a geodesic on 0']‘-’((1)). The case
®; = a is trivial. Assume that @; = b. Let i be a geodesic on @. Since ® € E;, we must
have
flo) = T o)=Tu,of(0)+(b-a)

We obtained that the equation T'(i,0%(®)) = f(®) — (b —a) holds for every geodesic
on @. If v is any other path that is not a geodesic on @, we must have T (v, ®) > f(®).
We would also have

T(v,0i(0)) 2T(v,0) = (b—a) > f(®) = (b—a) = T(u, 0} (®)).
We have made the following conclusion: If v is not a geodesic on w, then v is also not a
geodesic on o7 (®). In addition, all geodesics on @ have the same passage time on 6¢(®).
This implies that all geodesics on @ are geodesics on Gj’(w).

Let us now prove that every geodesic on Gj‘f(a)) is also a geodesic on . It suffices to
prove this for @ € E;N{®; = b}. Assume the contrary, that there is a geodesic Y on 07 (®)
that is not a geodesic on ®. Since

oj(Ej) Coj(Aj) =E;jn{w; =a} CEj,
we must have GJ‘-‘(O)) € E;. Therefore, the path y must pass through j on Gj‘?(co). Therefore,

f(oj(@)) = T(y,0{(0)=T(y,0)—(b—a) 32)
Since 7 is not a geodesic on ®, there must be a path § which is a geodesic and for which
T (7, ®) is strictly larger than 7'(6, ). However, @ € E; by the assumption. Therefore, 0
passes through jand T'(8, @) = T(6,0¢(®)) + (b — a). From (32) we obtain

f(oj(@)) = T(r,0)-(b—a)

T(6,0)— (b—a)
T(8,0}(m)).
This is a contradiction, because the value f must be smaller than or equal to the cost over
the path § on the envifornment 6 (®). O

V

ForV C W, define Ey = ey E;.
Proposition 10. For every j € V, the following holds
(F;(Ev) = Evﬁ{(x)j:a}. (33)

Proof. The inclusion 2 is obvious: If ® € Ev and ®; = a, then 6/(®) = ®. Therefore,
the environment @ is the image of @ under o7. That makes @ an element of o7 (Ev).

We need to prove that 6(Ey) C Ey. Take { € 0f(Ey). There exists ® € Ey such that
¢ = o0f(w). Since ® € Ey C E;, we can apply Proposition 9. Every geodesic on { must
be a geodesic on . However, € Ey. Every geodesic on @ must pass through all of the
vertices of V. All of the geodesics on { must satisfy the same condition. Thus, { € Ey. O

Ifd e {a,b}" and V € W™, define 673 Q= Qas

Gg = oMo---o0rm, (34)

V1

where «, ..., oy, are the components of o and Vi, ..., vy, are the components of V.
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The event I 4 is defined as
Ly = o(@={0eQ:a, = = 35
va = ool )={weQ:m, =a,...,0,=04}. (33)

Proposition 11. For every eveﬁf A, every vector V' € WK that has all distinct components,
and every two vectors o and B from {a,b}", the following holds

IR
P(ani,z) = %P (0% (an1,3)). (36)

Proof. Take @ € Q and fix V. When we remove the components of @ whose indices
appear in the vector v, we obtain a shorter sequence R+ (w) that is an element of Q- =

{a7b}W\{7}. Let us denote by P the induced probability measure on Q.

P(ani,g) = ¥ Pe)= Y PBPr(R+(@)
a)eAﬂI?‘E a)eAﬂI?‘ﬁ
B(B)
" R@) PR

Observe that (6.2 (@) = P(d)P+ (R (®)). Therefore,

P(B

) q
P (A ﬂIV,F) = 3@ m@;;ﬂ ?JP’(G7 0).

Since 073 is a bijection from A Nk, i to Gg A nr, ?), we can use the substitution

= Gg (o) in the last summation and obtain the equation (36) . O

Let us state a special case of the previous proposition in which the dimensions of vectors
are all 1.

Proposition 12. For every event A and every pair (o, ) € {a,b}* and every j € W, the
following holds

PAn{o=p}) = peiP(of(An{e=B)). @)

We now use (37) and (36) to prove the following two theorems.

Theorem 6. For every edge i € W,, the probabilities of the events A; and E; satisfy or every
i € W we have

PU) < P(E). (38)
Proof. Using (27) we obtain
P(Al) = P(Aiﬁ {(1),' = a}) —HP’(A,ﬂ {CO,' = b})

P(Ein{w; = a}) +P(A;N{w; = b})
< PE)+PAN{w =0b}). (39
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We now use (37) and (27) to bound the second term on the right-hand side of (39).
P(p) P(b)

P®) 0
< %P (E;). 40)
The inequality in (38) is now a direct consequence of (39) and (40). (Il

Theorem 7. Assume that V € W™ has all distinct components. Assume that j is not a
component of V. Assume that 7 and 5 are elements of {a,b}". Then,

ﬁ
P({ajfoog%O}ﬂI?g) < %%P(Ajm?w. 41)

Proof. We first use (36) to derive

(ool 20}, 5) = 28 (o] ({n007 20}r, 5)).
It suffices to prove that

o] ({(?jfocz;éO}ﬂI??) C ANk 5. (42)

L,  such that (=

Assume that § € o} g{a ifoo #0} ni, 3) There exists ® € {8jfo 0'3 #O} N
0. (o). Clearly, { € I5; . In order to prove that § € A;, we need
# 0.

to prove that d;f({) However, d;f({) = (9jf(6§((0)) =d,fo 677((1)) = 0 by our
choice of w. O

3. VARIANCE DECOMPOSITION

3.1. Integration by parts. We will first establish theorems that hold for general random
variables, not only first-passage percolation times. Theorems 8 and 9 are analogous to
integration by parts formulas from calculus.

Proposition 13. For every random variable @ on &, its expected value E[@] can be eval-
uated using the equation

Elg] = pElpoof]+(1-p)E[poo/]. (43)
Proof. Let us denote by P; the product measure on {a, b}W\{i} defined as

Pi(w) = ] p(1—p)telen. (44)
kew\{i}

Let [E; be the corresponding expected value. We use (19) to obtain
Elg] = E[p-lo—d+E[@ 1o
= E[9o0 lo=d +E[900] 10]

PEilpoof|+(1-p)E; [poof|. 45)
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We can apply (45) to ¢ o 6{ and use (14).

Elpoof] = pEilgoofoo]+(1-p)E |pooioo]

= PEi[pocf]+(1-p)Ei[poo]]
= Eilpoo/].

In an analogous way we derive the equality E [(p o Gﬂ =L, [(p ) Gib]. The equation (45)
becomes (43). [l

For w € Q and i € W, let us define

—\/5L ifei=a,
ri(w) = (46)

i, ifor=b.

For each i, we have E[r;] = 0 and var(r;) = 1. For S C W, we define
rs(@) = []n(@) (47)
ies
Due to independence, we have E [rg] = 0 and var(S) = 1 whenever S # 0. Also, if S

and T are different sets, then their dot product E [rgrr] must be equal to 0. Therefore, the
functions (rs)gcy form an orthonormal basis of L*(Q).

Theorem 8. For every nonempty S C W and every random variable @, the expected value
of Qrs satisfies

Elprs) = p(1—p) E[dsg]. (48)

Theorem 8 is a special case obtained by placing S = T in the following more general
result.

Theorem 9. For every two sets T and S with T C S C W, and every random variable @,
the expected value of @rs satisfies

Elprs) = p(1-p) E[(3r¢)-rsz]. (49)

Proof. Let us first consider the case T = {i}. An application of (43) results in
Elprs] = pElgrsoof]+(1-p)E|grsoo!]

= PEl(po0f) (rso0f)|+(1-p)E [(poo?) (rsoof)]

+(1-p)E {(‘POGIP) ~\/erw}}

p(1-p)E [((Poci” - <P0<ff“) rS\{i}]

V(1 —=p)E [0,0rs (1] - (50)

The general result (49) follows by a straightforward induction. (]

a l—p
—pE l((POGi)' 5 S\

Proposition 14. Assume that U CV CW. If dyg(®) = 0 for all ®, then dyg(w) =0 for
all .
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Proof. Let Q C W\ V. Let us apply the formula (49) to ¢ =dyg, T =V \U, and S =
{viviuo.

_ _ V\UI
0 = E[(wg) rywiel = vVr(l=p) " E[(dnwdug) o]

= V" El@ve) rl. 1)

The equation (51) holds for every Q C W\ V. If Q is a set that has non-trivial intersection
with V, then E[(dyvg) - ro] is equal to 0 because of (17). Hence, dy g is orthogonal to every
element of the basis. Thus, dyg = 0. O

3.2. Generalization of Talagrand’s inequality. We will use the following variant of
Beckner-Bonami inequality.

Theorem 10. If g is an element of span{rg : |Q| < L}, then for each q > 2, there exists a

constant o, = ol(p,q) > 0 such that

2 2
lgllz < e llglly,

where ¢ is the conjugate of q.
Proof. This result is proved in [34]. It is listed as the Proposition 2.2 on page 1580. [
We use Beckner-Bonami inequality to generalize Talagrand’s theorem 1.5 from [34].

Proof of Theorem 1. The coefficients of f in base (rs)gcy will be denoted by as. The
coefficients satisfy

as = Elfrs)=/p(1—p) E[dsf]. (52)

Except for the coefficient ag, the random variables f — E[f] and f have the same coeffi-
cients. Therefore,

var(f) = Y (p(1-p)" (E[dsf)) (53)
SCW,S#0

The variance is the sum of squares of all Fourier coefficients a%. The sum will be

decomposed into two sums: the lower sum and the higher sum.

var(f) = Li(f)+Hi(f), where

L(f) = Y a, (54)
1<|S|<k

H(f) = Y a. (55)
|S|>k

The lower sum will only undergo algebraic transformations. Equation (48) implies

as = E[frs]=+/p ‘ g E[dsf].
The lower sum L;(f) can now be written as
L(f) = ¥ (e(-p)" E[ss])’. (56)
1<|S|<k

The higher sum will be first re-organized. Let .# be the family of those subsets of W that
have cardinality at least k. Let us introduce some notation that will simplify the writing.
We will denote by 77 the set of all subsets of W that contain T, i.e.

Jr = {SCW:TCS}.
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In the case when T consists of a single element 7, we may write .%; instead of .7,

a2
ny) = Lad=Ya g Lus-YL | L &

SeF SeF iew ieW Seﬁﬁ/@-l

2
aS ]
L\ X B0,

inew \ sezn.g;, neW\{i}

2

as
2\ & L w0 ) oD

HeW \eW\{i} \SeZn7;, i)

We can now continue in the same way as in (57) until the number of indices becomes k.
The summation (57) becomes

>
H(f) = k! 5 . (58)
Mgw,z\m:k SE;WMISI(IS\—1)(|S\—2)--~(\Sl—k+1)
We now apply (49) with ¢ = f and T = M to obtain

as = Elfrs]=p(—p)" Eduf rsu)]. (59)
Equations (58) and (59) imply

2
H(f) = (p(1—=p))*E [(Opf) rs\um] ) . (60)

k!-
e <seym,,,M STCST— D(ST—2)~ (8] — &+ 1)

For fixed M, let us denote by (M) the inner summation in (60). Formally,

— K. (p(1=p))'E [(9uf) rsvu)”
" \se B, ISIASI=D)(IS[=2) - (IS —k+1) ) ©

We will assume that the summation is restricted to the sets M for which ||dp f]|; is non-
zero. Since we are working with finite sample space, the L'-norm is zero only when the
function dy f is identically equal to 0. We split X(M) into two groups: the summation H,
corresponding to sets of sizes smaller than Ly; and the summation H,; corresponding to
sets of sizes larger than or equal to Ly;. The integer Ly, will be determined later. If the
number of elements of S is at least &, then the product of the numbers |S|, |S]— 1, ...,
|S| — k41 in the denominator is greater than or equal to k!. Hence,

(p(1 = p)'E [(Iuaf) rsim)’
[ST(ST—1) (1S =2 (|S| —k+1)

(M)

(61)

s

- = l.
Hy, k!
SeIy,k<|S|<Ly

(p(1—p))* (

IN

2
E [(Omf) rs\m) > .
S€.Iy k<|S|<Ly
There is an obvious bijection between %), and the subsets of W \ M. Hence, we can do the
substitution Q = S\ M and obtain the following bound for H,,.
- 2
Hy < (p(1-p)) Y E[(dmf)rol”
QCW\M,|Q|<Ly—k

We will now use (60) to find an upper bound for H, 1; The cardinalities of sets S are now
bigger than or equal to Ly,. Therefore, the product of numbers |S|, |S|—1, ..., |S|—k+1

)
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in the denominator is greater than or equal to Lys - (Lys — 1) - -+ (Lay — k+ 1) which is equal
to k! - (L,’CW ) Therefore, the sum H;, satisfies

(p(1 = p)E [(Ouf) rsm]”
ISI(ST—1)(jST—2) - (S| —k+1)

+
Hy, = k!
S€Iy,|S|>Ly

Y
M Y E[@uf)rsw)’

(k) SeIy,|S|>Ly

ERYY
= CUZPE oy sl

() ocw\mgsLy—k

IN

Let us now set our first requirement for Ly,. This requirement will be Ly; > 2k. Then, each

of the numbers Ly, Ly — 1, ..., Lyy —k+ 1 is greater than or equal to % and their product
k
is at least L, /2. Therefore, (LI’{” ) > % The sum H;(f) defined in (55) and expanded in

(57) can now be bounded as follows.

HU) < G-p) Y ( E{(0us) ol
MCW IM|=k \QCW\M,|Q|<Ly—k
k
= () rQF) . 62
M QCW\M,|Q|>Ly —k

Let us define the random variable g in the following way

g = ) E[(Ouf)rolro. (63)
QCW\M,|Q|<Ly—k

The random variable g is the projection of dy f onto the subspace spanned by {r¢} for sets
Q of cardinality strictly smaller than Ly, — k. The inequality (62) becomes

Hi(f)
‘ 5 2k 5
< (p(1-p)) ) ||8H2+LT ) E{(duf)rol™|. (64)
MCW M=k M QCW\M,IQ|>Ly—k

The second term on the right-hand side of (64) has an excellent coefficient L’M in the de-
nominator. We can afford the following generous bound

E[(duf)rol* < |oufll3-

QSW\M,|Q|>Ly—k
The inequality (64) becomes
‘ , 2k
H(f) = (p(=p) X (llgla+ 7 louslz ) - (65)
MCW,|M|=k M

Since the cardinalities are strictly smaller than Ly;, we can use Theorem 10. We will take
q = % There exists a scalar a; such that

gl < et g3 - (66)
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From (66) and Cauchy-Schwarz inequality we now derive
4/3 4/3
et [lg|-Jgl 2] < et (B [IgP)* E lg))' )

4/3 2/3
= eMbu||g|37 g3 (67)

IN

2
llgll2

Dividing (67) by || g||;/ 3 and raising to the exponent % gives us
gl < €™ |iglly < €|y f]1, (68)

where 0 = %Oq is a constant that does not depend on n.
Using (68) we transform (65) into

y < fe20alm 2Kk
B _|_ P
MCW,[M|=k lomfl3/lomfIF L,

Let us introduce & = (p(1 — p))* - max{6,2% - k!}, o = 20, and

HG) < (p(-p) )naan%. (69)

|9 113
M . (70)
llomfI17
Define the function v, as
e 1
L) = —+— 71
wm(L) By, T IF (71)
we can re-write (69) as
H(f) < 6 Y  wullu)-|oufl3- (72)
MCW,|M|=k

We will now choose a convenient L. So far, we only had one requirement that Ly, must
satisfy. The requirement was that Ly, must be bounded below by 2k. The number 2k is a
constant that does not depend on 7.

Observe that if By > €°%, then the open interval (M log By

TR ) is large enough to

contain at least one integer. Let By be the real number such that B > By implies B* >logB.
Let B = max{e®*,By}.
If we assume that By, > B, then we choose Ly with

Ly = max{2k, VOgBMJ } .
2a

This choice for Ly, immediately implies Ly > i log By, hence

k
iR Ba) (73)
LY, logh By
The inequality Ly < ﬁ log Bys gives us
oLy % log By 1 1
e e _ (74)

< = < .

By By v/By logk By
Inequalities (73) and (74) imply that if By; > B, then we can choose Ly, in such a way that
1+ Ba)k

. 75
logk By (7)

Wm (Ly)
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If By < B, then we are going to use a much simpler bound for X(M) defined in (61).
The product of numbers |S|, (|S| —1), ..., (|S| —k+1) in the denominator is at least as
big as k!. This generous bound is sufficient to cancel k! and we are left with X(M) <
(p(1—p))¥||Om |3 However, since By < B, we have

1+1logkB

1) < (p(t=p) oI T

(76)

Let us now use (70) to replace log By; with 21og H%;Hf . In the case By < B we apply (76),

while in the case By > B we apply (72) and (75) to conclude that there exists a constant
C € R such that

omfl3
H(f) < G- I Ma”2f o (7
— 'MJ 112
MCW,|M|=k 1 4+ (10g HaMle)
We now add (56) and (77) to complete the proof of the theorem. [l

Remark. The function yy,(L) defined in (71) cannot be bounded by something much better
than log’k By, as was done in (75). Basic analysis of yj; shows that it is convex and
increasing for positive L. Its minimum is attained at the solution of the equation y'(L) =0,
which after the substitutions

o o kBys 1/(k+1)
=2 L and x=-—— (=M
M k+1< a )

becomes ye’ = x. The function x — y(x) is not an elementary function, but it is very easy
to prove that it is increasing and

tim 2% .
x—+eo logx

3.3. First-passage percolation on torus. We now turn to first-passage percolation time
/7 on torus.

Proposition 15. In the torus model, for every i € W,, we have

1 b
P4;) < ;P(Ei)SW~ (78)

Proof. The first inequality follows from (38). Observe that all the values P(E;) are equal,
due to the symmetry of the graph. Therefore,

£ s

1 1
PE) — & T PE)-5E|T
J

jew
The sum Y ;cy 1g; is bounded by bn /a because all of the essential edges must be on one
geodesic whose length is at most %". O

Theorem 11. Let M CW be a set with k > 1 elements. If f* is the first passage percolation
time on torus, then there exist constants Ny and 0 = 0(k, p) such that for all n > Ny the
following inequality holds

)
P(ouf*#0) < . (79)
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Proof. We will omit the superscript 7. However, the argument in this proof applies only to
the first passage percolation on torus. The inequality is obviuous if dys f = 0 almost surely.
Assume that dy f(®) # 0 for some @. There is an ordering (my,...,my) of the set M and a
vector & = (0,...,0) € {a,b}*~! such that 9, f(Om: 0+ -0 Ot (®)) # 0. Let us denote
V= (ma,...,my). We will now sum over all possible elements m; and all possible choices
of V and .

P(uf#£0) < ;3P<8m1foc_§7$0)

B inl,;’,ﬁ)ﬁe{%}k_]P({amlfoog #O}HI?‘?) . (80)

We now use (41) to obtain

N

p({amlfoog;éo}m?ﬁ) < %P(Aml)
(max{p,l—p})kI. b
min{p,1—p} apni=1’

where for the last inequality we used (78). The number of terms in the summations (80)
is really large a@) is exponential in k, because we are summing over all possibilities for
mi, 7, 7, and . However, the number of terms depends only on k. Therefore, the last

inequality and (80) can be used to conclude that there exists a scalar 6 for which (79) is
satisfied. (Il

Proof of Corollary 1. The denominator in the second term in (6) contains Hg}’;’;“? We find
a lower bound for this component using Cauchy’s inequality and (79).

omflli = N9mf 1oy sz0l} < 1O fll2- /P (O f #0)
Vo
< ||&Mf||2 a1 -
n?z
[|9he fl2

Hence, log IR > Cylogn, for some constant C.

In the case k = 2, we can also bound the first term on the right-hand side of (6) in the
following way

(p(1—p))SHE[9sf])* = (p(1-p) ¥ (E[0:f))

SCW;1<|S|<k iew
< (p(1-p) ZV,V (b—a)P(4;))
2
< P(lp)(ba)znd‘<ndl_1)

= p(l—p)(b—a)- prE R

In dimension d > 2 this last quantity can be bounded by a constant, and is, therefore,
negligible and dominated by the second term. This proves the first of the two bounds in
(7). For the second bound, observe that ||dy f]|3 satisfies

o f 13 E (|0 f 1] = E 10w 1 {3y 120)]
2M (b —a)P(du f #0).

IN
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Therefore, the second summation in (6) can be bounded by

number of sets M of k elements for which dy, f # 0.

It remains to notice that the numerator of each fraction in the summation contains
|mf||5 which can be bounded from above by CoP(dy f # 0). Therefore, the right-hand
side of (6) is bounded by

mﬂi [Ni], where Ni is the

Cc C
P(ouf#0) = E Lrr0] 5
log?n 4, log’n \1\;:’2 s
and the last summation in the expected value is precisely the random variable N,. ]

As mentioned earlier, we believe that the following conjectures are true, but we do not
know how to prove them.

Conjecture 2. In first passage percolation model, there exists a constant C independent
on N such that

Y lomslz < C-N.

MQVV,Z,‘M‘:Z

Conjecture 3. In first passage percolation model, there exists a constant C independent
on N such that

Y llomstlz < C-N

MCW,,|M|=2

4. EXTREME ENVIRONMENTS

Our next goal is to construct special, extreme, environments on which the derivatives
will have very large positive values and very small negative values. These environments
will be used to establish the bounds (13) in Theorem 3. In addition, these special environ-
ments will be used to show that the sets such as A; \ E;, A; \ E;, and E; \Ai are non-empty
in general.

Many of the results in this section involve somewhat lengthy algebraic calculations.
Such proofs are presented in the Appendix B.

The results of this section apply to both models: the first-passage percolation between
source and sink, and the first-passage percolation time on torus model.

4.1. Environments with overpasses. We will define one class of environments called en-
vironments with overpasses. The partial derivatives dsf will have exponentially large val-
ues on the environments with overpasses. These environments will be denoted by @(m, k)
for fixed integers m and k that satisfy 1 <k <m—1.

Consider the path ) from the source to the sink. Let us identify edges v, v2, ..., v, on
the path . Let L be the number of edges on Y that do not belong to S = {vy,...,v,}. Let
7 be a path from the source to the sink that is of equal length as J, but does not contain
any of the edges vy, ..., v,. Let C; C 7 be a subset that consists of k edges that are far
away from {vi,...,v,}. The environment with overpass @(m,k) assigns the value b to
every edge outside of U y;. The value b is also assigned to the k edges that belong to C;.
Every edge on % U7 \ C; is assigned the value a.
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Proposition 16. For every pair (m,k) that satisfies 1 <k <m— 1, there exists no such that
for n > ny, the following holds

k—1
dsf(d(m,k)) = (b—a)-(—l)’”‘~Z(—1)~"-(’7)-<k—1)- (81)

Jj=0 J

Proof. The proof is in the Appendix B. g

The next proposition implies the bounds (13) in Theorem 3.

Proposition 17. There is an integer mg > 0 such that for every m > my there is an integer
ny and two sets S} and S, of m edges on the graph |0, nm]d that satisfies

P(as$f>(\4/§)m(b—a))>o and P(asr;f<—(<‘/§)m(b—a))>o. (82)

Proof. Let mg be the integer defined in Proposition 25. We may assume that my is greater
than 50, so that the interval

not, then we just incrase my to be 50.

Let m > myg and let k, and k, be one even and one odd integer from [72—’2, %] Let us
consider the environments with overpasses @, = ®(m,k,) and @, = ®(m,k,). Let S, and
S, be the corresponding sets of vertices with respect to which the derivatives are evaluated.
Let us define

[72%, %} contains at least one even and one odd integer. If

Comt
Fe = ﬁ . asgf(a)g) and E) =

(~"!

L35, f (@), (83)

We will now take the summation from (81) and group terms into pairs. For F, we group
the term that corresponds to j = 0 with the term that corresponds to j = 1. We obtain

h "Jf;ol(l)f.(”7>-(kej>

J

<kzzo)/2 ((2113 1) (ke—21—1) — <Z> - 21)> '

Every term in the last summation is non-negative. We obtain a lower bound for —F, by
ignoring all but the last term, and then we use (145).

m m 4/=Mm
—-F, > (ke—1>_2<ke—2>>\/§' (84)

Our next task is to obtain a bound for F,,. This time we will group the term that corresponds
to j = 1 with the term that corresponds to j = 2; the term which corresponds to j = 3 will
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be grouped with the term that has j = 4; and so on.

o= S (1) ke

j=0

_ k0+1j22‘; (<’2”l) (k, —21) — (21”1 1)(k(,2l+1)>.

All terms are positive, hence if we ignore all except for the last one, we obtain the following

bound.
m m 4/=m
F, > -2 3. 85
(k0—1> (k0—2>>\f (85)

The inequalities (84) and (85) together with (83) give us
(—1)"05,f(@) > V3"(b—a) and (=1)""'95,f(@,) > V3" (b—a).  (86)

One of the numbers (—1)" and (—1)"~! is positive and the other is negative. In the
case that (—1)” = 1 and (—1)""! = —1, we define (S},,S,,, @, ®_) = (S¢S, @e, @,).
If (=1)" = —1 and (—1)""! = 1, then we define (S}, S,,, @, ®_) = (S,,Se, @y, @,). In
either of the cases, the inequalities (86) turn into

Igi (@) > V3" (b—a) and Iy f(@-) < V3" (b—a).
The last pair of inequalities implies (82). (]

4.2. Environments with valleys. We will describe another special class of environments
®(m, k) that we will call environments with valleys. These environments will show that the
upper bounds ds, f < (b—a), ds,f < 2(b—a), and s, f < 3(b — a) cannot be improved
for sets Sy, S3, and Sy that satisfy |S2| = 2, |S3| = 3, and |S4]| = 4.

We will assume that d > 3. Fix two integers m and k such that 0 <k < m — 1. Consider
the path ¥ from the source to the sink. Let us identify edges vy, vy, ..., v, on the path
Y- Let L be the number of edges on 7 that do not belong to S = {vy,...,v,}. Let y; be
the path that has only edge v; in common with . We can assume for sufficiently large n,
that the path y; has the same length as 7y, i.e. that in addition to the edge v, the path ¥
has L+m — 1 edges. Define the path 9» to be discjoint with y; and that has only edge v,
in common with y. We can also assume that there are L+m — 1 edges in 15 \ {v2}. The

paths %, ..., 7, are defined in analogous way.
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On each of the paths 7, ..., ¥, we identify a set of k edges. Let us label those sets as
Cj, ..., Cy. The environment with valleys, @ (m, k), is defined in the following way: Every
edge outside of the union U7y U---U Y, has value b; Every edge in C; U --- UG, has
value b; Every edge in o Uy U+ U, \ (C1U---UCy,) has value a.

For each fixed m and k, it is possible to choose n large enough, so that the edges vy,
..., vy, and the paths 7, ..., ¥, can be spaced apart sufficiently such that on each of the
environments 6 (®(m,k)), the paths ¥, %1, ..., ¥ are the only possible geodesics.

Proposition 18. For every pair (m, k) that satisfies 0 < k <m— 1, there exists ny such that
for n > ny the following holds

m—k—2
dsf(@d(m,k)) = (b—a)-((m—k—l)(m—1)+ Y (—l)fsk,,), (87)
j=1

where Sy = (m_k)(jn—:l)_m(m;l)’ (88)

In the case k € {m—2,m — 1}, the summation in (87) should be replaced with 0.

Proof. The proof is in the Appendix B. (]

Proposition 19. For sufficiently large n, there exist sets S,53,S4 CW with |S3| =2, |S3| =
3, and |S4| = 4 such that
P(ds,f =b—a) >0, P(as3f: Z(b—a)) >0,
and P(0ds,f=3(b—a))>0. (89)
Proof. The first result is obtained when we use (87) with m = 2 and k = 0; we obtain
ds, f(@(2,0)) = b—a. The second result is obtained when we use (87) with m = 3 and
k = 1; the corresponding environment derivative is ds, f(®(3,1)) = 2(b —a).
For the third result in (89), we use (87) with m = 4 and k = 2. The theorem implies
s, f(@(4,2)) =3(b—a). O

4.3. Relationship between influential and essential edges. We established in (30) that
E; C A;. The following proposition shows that the reverse inclusion does not hold.

Proposition 20. There exists ng such that for all n > nq there exists an edge i for which the
following holds

ANE £ 0, 90)
E\Ain{w=a}) # 0. (C29)

Proof. Let us first construct an environment @ in E; N {@; = b}. This will be a sufficient
example to prove (91).

Let us take the straight line ¥ in the graph. Let us pick one edge on this line 7y and call
it i. Set wy to be b for k = i and for k outside . Set @y to be a for every edge [ on the line
7 that is different from i. Then 7 is the only geodesic. It passes through i although @; = b.
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We now construct an environment @ in A; \ E;. Let us pick two paths y; and 7 that
have the same starting points and the same ending points. However, the paths y; and p»
have sections that are reflections of each other, as shown in the picture above. We identify
two edges i] € 71\ 12 and iy € %\ ;1 that are far away from each other. Consider the
environment @ that has the value b on the edges i; and i, and on every edge outside of
%1 U7,. The environment @ has the value a on each edge from ; U \ {i1,i>}. The edges
i1 and i, are influential. However, neither of them is essential, because in the unchanged
environment @, each of 7, and 7 is a geodesic. U

Proposition 21. Assume that the real numbers a and b are such that there exist integers
kq and ky, for which ak, + bky, € (0,b — a). Then, there exists an integer ng and an edge j
such that for all n > ng, the following holds

Aj\Ej 75 @; (92)
EN\A; # 0. (93)

Proof. Let us first prove (92). Let us consider two paths y; and 7, that have the same
starting points and the same ending points, but that contain sections that are sufficiently
far away from each other. The passage times are set to b for all edges outside of y; and
%. Due our assumptions on a and b, we can make such choices for passage times on
discjoint sections of ¥, and 7 such that the difference T (7, @) — T (7, @) belongs to the
open interval (0,6 —a).

Then, let us identify an edge j on the section of y; far away from 7> that satisfies ®; = b.
The path 7; is the only geodesic on @ and the path 7; is the only geodesic on Gf(a)). The
edge j is not semi-essential on @, however it is influential. Hence, ® € A; \E -

The proof for (93) is similar. We can take the same construction that we used in the
proof of (92). This time, we identify an edge j' on the section ¥ that is far away from ¥;
and that satisfies @y = a. The path 9, is the only geodesic on @ and the path y; is the only
geodesic on 0'5.7,((1)). Therefore, the edge j' is essential on @. However, the edge is not very

influential, because d (o) is strictly smaller than b — a. O

For a set V of edges, we defined Ey as Njcy E;. Therefore, it makes sense to generalize
the concept of essential edge and talk about essential sets of edges. Unfortunately, if we
define Ay = {dy f # 0}, the fundamental inclusion E; C A; does not generalize to sets
with more than one element. Let us consider the case V = {v;,v;}. The following two
propositions imply that Ey Z Ay and that Ay Z A, UA,,.

Proposition 22. For sufficiently large n, there are edges vi and v, for which the following
holds

{00, 00,f #O0}\ (A, UA,,) # 0. (94)
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Proof. We will start from the environment with overpass @(2,1), where we set m = 2 and
k = 1. We construct @ by copying the environment ®(2, 1) and making the following two
changes: ®,, = @,, = b. Then, on the environment @, the path ; is the only geodesic.
Neither v{ nor v, is influential, because turning either @,, or @,, from b to a would result
in both paths 9y and 7; being the geodesics.

Hence, the environment @ that we constructed satisfies @ ¢ A, UA,,. However, we
know that w € {d,,d,,f <0} C {d,,d,f #0}. O

Proposition 23. For sufficiently large n, there exists edges vi and v, such that

(Ev, NE)\ {9, 00f £0} # 0. (95)

Proof. Let us consider a straight line ¥ and let us identify two edges v; and v, on the line
Y. We will set the environment @ to satisfy @y = b for every k € y; ,, = @,, = b; and
o, = afork e y\{vi,m}.

The line Y is the geodesic for sufficiently large n. Each of the edges v| and v; is essential,
hence w € E,, NE,,. Let L be the number of edges on the line y. The values of the function
f at the environments o' 0 6,22 for (ay, ) € {a,b}” are

f(oflocfz(w)) = (L—2)a+2b;
f(crffl ooé’z((u)) = (L-1)a+b;
f@ﬁoqywﬁ — (L—-Da+b;
f(o) ool (®)) = La.
Therefore, the value of dy, ) (@) is 0 and @ & {9, d,, f # O}. m

5. ALMOST SURE BOUNDS

In this section we prove the Theorem 3. We will first prove the inequalities (11). It
suffices to prove the proposition below.

Proposition 24. Assume @ is a random variable such that for every subset T C W with
k elements we have dr @ € [L,U). Then, the following inequality holds for every subset
S C W with k+ 1 elements.

o9 e[L—U,U—L]. (96)
Proof. Let s be an arbitrary element of S. Let T = S\ {s}.
Isp(w) = ore(o](w))—dre(c!(w)).

The result (96) immediately follows from the previous equality. (]
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Theorem 12. Let k € W and let S C W be a subset with at least two elements. The deriva-
tives of the first-passage percolation time f satisfy the following inequalities for every
o< Q.

df(®) € [0,b—al; ©7)
df(w) € [—(b—a),b—a], if|S|=2; (98)
Osf(@)] < 2572.(b—a). (99)

Proof. The relation (97) is obvious because the function f must increase, and it can in-
crease by at most b — a if one edge changes its passage time from a to b. Let us first
observe that for sets S with two elements, the relation (98) and the inequality (99) follow
directly from (97) and (96). Observe that if ¢ is any function, and not just first passage
percolation time, then (5) implies |dg@(®)| < 2/%!||@||. for every set G. Assume now that
S has at least two elements k and [. Let G = S\ {k,/}.

osf(@)] = 196 (daf(@))] <219 (|9 f|.
< 26l (h—a).
The proof is complete once we observe that |G| = |S| —2. O

Observe that (99) implies (12). The bounds (13) in Theorem 3 follow from (82) that
was proved in Proposition 17.
6. EVALUATION OF %3 AND %
The bound (99) is not sharp. The lower bound can be improved when |S| = 3.

Theorem 13. Let S C W be a subset with three elements. The first passage percolation
time f satisfies the following inequality for every @ € Q

osf(w) > —(b—a). (100)
Proof. Let S = {k,I,m}. We will make our notation shorter and write ¢(%1:%2:63) () in-

stead of G,f 'o 6162 o 0,23(60) for (61,6,0;) € {a,b}>. We will first prove the following
implication

o) (w) ¢ ENENE, = dsf(®)>—(b—a) (101)
The result (101) will follow from the following two

c“P(w) e Ef = dsf(w)>—(b—a), (102)
o) (®) e E, = dsf(w)>—(b—a). (103)

The first step in proving (102) is to express the derivative dsf(®) as
i5f(@) = (f(a®P(@)=f(c"(0)) (104)
+ (0 (@) = £ (@))) (105)
~ (#(6 D (0)) - f(0 V) (@))) (106)
~ (r(6" P (@) - (") (@))). (107)

Assume that ¢(@4? >(w) € E,f The Proposition 2 (a) implies that the term (106) is equal
to 0. The terms (104) and (105) are non-negative, and the negative term (107) is bounded
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below by —(b — a), which proves (102). In order to prove (103), we start by expressing
dsf(w) as

a5f(@) = (f(6"P (@)~ f(c"" () (108)
+ (61 (@) = f(o ) (@))) (109)
~ ((c®“P(@) = (o (0))) (110)
~ (0P (@) = f(“0 ) (@))). i

Assume that G(“’”’b)(a)) € E,,. The Proposition 2 (b) implies that the term (109) is equal
to (b —a). The term (108) is non-negative. The terms (110) and (111) are negative but
bounded below by —(b — a). Therefore, dsf(®) is bounded below by (b—a) —2(b—a) =
—(b—a). This completes the proof of (103).

We proved (101) which states that the inequality dsf (@) > —(b — a) is satisfied unless
c(@@b) (@) is an element of E; NE; NES. The analogous statements hold for 6@ (@)
and ¢(:@4) (). Hence, the required bound (100) is proved unless all of the following three
inclusions are satisfied

c)(w) e ENENES, (112)
o’ (@) € ENESNE,, and (113)
c?4)(w) e ESNENE,. (114)

Hence, it suffices to prove dsf > —(b — a) under the conditions (112), (113), and (114).
Let 7 be a geodesic on olaab) (w) that does not contain the edge m. Such geodesic must
exist because we assumed that ¢(44?) (w) € ES. The geodesic y;; must contain both edges
k and . We define the curves 7, and %, in analaogous ways. Once the curves Y, Yim»
and Y, are fixed, we define the relation < on {k,/,m}. We will write k < [ if on the curve
Y the edge k appears before the edge [ when moving from the source to the sink. There
are two cases:

e Case 1: The relation < does not have the minimum in {k,/,m};

e Case 2: The relation < has the minimum in {k,/,m}.
Case 1. This case is easier to consider. We will prove that ds f(®) > 0 which is stronger
than the required inequality. We may assume that k <[,/ < m, and m < k.

Lm

Ly :
.................................................. % - e

L l R

Let us denote by ¢y, the total passage time between the edges k and / on the geodesic ;.
We define ey, and ¢;,,, in analogous way. Let us denote by L the total passage time on the
geodesic 7y before the edge k. Let R; be the total passage time on the geodesic 7, after the
edge /. The numbers L,,, L;, Ry, and R,, are defined in similar ways. Let us emphasize that
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none of the previously defined passage times includes the edges k, m, and /. Therefore, the
—

%lantities that we defined are the same on the environments o © (@) for all eight choices

6 € {a,b}>. The following identities hold

f( N @) = Li+eq+Ri+2a, (115)
F(6“P) (@) = Ly+epm+Ri+2a, (116)
f(G(b,a,a)(w)) > f(c(“=“v“)(co)), (117)
f(c(b,b,b)(w)) > f(c(b,b-,a)(w)% (118)
fle" (@) < Li+a+R, (19
f(6“PP (@) < Li+a+R. (120)

The equalities (115) and (116) are due to the definitions of y;; and ,. The inequalities
(117) and (118) are the consequences of monotonicity. Let us prove (119). On the envi-
ronment ¢(*4%) (@), we can construct a path § such that (8, 6»*?)()) = L; + a+R;.
Let us identify the section of the curve 7, before the point [ and call it §;. It has the
passage time L;. Let us consider the section of the curve v; after the point /. This section
will be called 0,. Its passage time is R;. The curve § = 6 U {/} U &, has the passage time
L;+ a—+ R;. The equality (120) is proved in a similar way.
From (115)—(120) we obtain

dsf(®) > (Ly+ew+R +2a)+ (Ly+ epn+ Ri +2a)
—(Li+a+R)— (L +a+R)
= ey+Ln+ey,+2a—L;. (121)

Let us consider the geodesic ¥, on the environment 6»*% (@). Let us consider the curve
& that passes through m and consists of the left part of ¥, and the right part of ¥,,. The
curve & is not a geodesic on (24 () because of (114). Hence, L, +a+ Ry > L+ e +
R,, +2a. The last inequality is equivalent to L,, — L; > e;;, +a > 0. The inequality (121)
turns into ds f(®) > ey + epm + 3a > 3a > — (b — a). This finishes the proof in Case 1.
Remark. We proved that dsf > 3a. If the number 3a were larger than 2(b — a), which is
the maximal possible value for dgf, then Case 1 would not be possible and Case 2 would
be the only one worth considering.

Case 2. We may assume that & is the minimum, i.e. k </ and k < m. Without loss of
generality, we may assume that [ < m.

The sections of the curves J;; and ¥, before the edge k must have equal passage times. Let
us denote by L; the common passage time of these sections. We may modify one of the
curves Y and 7, in such a way that the sections before k actually coincide. In a similar
way, the passage times after the edge m on the curves ¥, and ¥, are equal. We will denote
these passage times by R,,,. We define L; as the passage time over the curve 7;,, before the
edge [; R; the passage time over 7} after [. We define ey, e;,,, and ey, as passage times
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over the open intervals (k,[), (I,m), and (k,m) on the curves Y, ¥im» and Yy, respectively.
Let us define the real number 6 in such a way that the following holds

en = eytemtato. (122)

Such 6 is unique as it is a solution to a simple linear equation. We don’t know whether 0 is
positive or negative. But we do know that 6 satisfies the inequality 8 < b —a. This follows
from the fact that on G(“*b=“)((x)), the minimal passage time is over the curve %,. This
passage time is Ly + eg,, + R, + 2a and must be smaller than or equal to the passage time
Ly + ex + ey + Ry +2a+ b over the modified curve in which the segment (k,m) is replaced
with (k,[)U{l}U(I,m). Let us define the real numbers 6, and 6 with the following two
identities

L = Li+ey+a+06g, (123)

R, = Ru+ey,+a+6g. (124)

The numbers 6, and 6g must belong to the interval (0,6 —a]. Let us prove that 6 €
(0,b—a). We need to prove 6, > 0 and 6; < b—a. The inequality 6;, > 0 follows from the
fact that on o(@%?) (), every geodesic must go through k and the path ¥, is a geodesic. If
we take the section of this geodesic before the edge / and replace it with the corresponding
section of ¥;,,, then we will get something that is not a geodesic because of (112). The
change of the passage time must satisfy

0 < Li—Ly—a—ey=20r.

Let us now prove that 6, < b —a. Consider the environment 6»% (). The curve ¥, is
a geodesic. When we replace the section before [ with the corresponding section of 7, the
passage time may only increase. The change in the passage time is

0 < —Li+Li+b+ey
= —(Lk—i—ekl—l—a—&—@L)—i-Lk—i-b—i—ekh

hence 6, < b — a. In an analogous way we prove that 6g € (0,b — al.

Ly k ey +em+a+0 m R

Li+ewy+a+6L ) Ry +epm+a+6g

Since ¥y, Yim» and Y, are geodesics on 6“4 (@), 6»* (@), and 6(@*% (@), respec-
tively, we obtain

F(6P) (@) = Li+Rp+ew+em-+3a+ 6k, (125)
f(@ PN (@) = LitRn+en+em+3a+9, (126)
F(6P4) (@) = Li+Ry+ew+em+3a+6L. (127)
Due to monotonicity we have
f(c(b,b,b) () > f(6<a-,b7b) ()). (128)

Let us consider the environment G(b*“vb)(a)) and the curve { that passes through / and
not through k and m. The section of { before I coincides with 7, and the section after
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[ coincides with . The passage time over { is greater than or equal than the minimal
passage time, hence

F(6PP) (@) < Li+Rp+ ex + e+ 3a+ 6+ 6. (129)

The minimal passage time f(c**% (®)) is smaller than or equal to the minimum of the
passage times over the curves %, and Y, hence

f(6®P(@)) < Li4Ru+ew+em+2a+b+min{6,6}. (130)

Finally, let us consider the environment olaaa) (). By considering the passage time over
the curve ¥, we obtain

f(6'4) (@) < Ly+Rpy+ep+epm+3a+t0. (131)

Let us consider the curve 7y, in which we add the vertex [ and replace the section (k,m)
with the sections (k,!) and (I,m) of the curves ¥ and 7,. The passage time over ¥, gives
us

F(6 ) (@) < Li+Ry+ew+em+3a. (132)
The inequalities (131) and (132) imply
f(6“) (@) < Li+Ry+ ey + e+ 3a+min{6,0}. (133)

We now use (125)—(130) and (133) to find the lower bound on dsf(®). Observe that
Ry + Ry, + ex + €1, appears equally many times with sign + as with sign —. We can ignore
these terms. Hence,

dsf(w) > a—b+6—min{6;,0} —min{6,0}. (134)

Define F(60,6.) = 6 —min{6,,0} —min{6,0}. It sufices to prove that F(6,6.) > 0.
There are two cases: 6 >0 and 8 < 0. If 8 > 0, then min{6,0} = 0 and F(6,6.) =
0 —min{6,0} > 0. If 6 < 0, then from 6y, > 0 we have min{0,6,} = 0, and F(0,6) =
6 —0 — 06 =—0 > 0. This completes the proof of Case 2, which was the only remaining
case that we needed to consider. O

Theorem 14. The first four elements of the sequence (%) and the first three elements of
the sequence (.%£,) are

(%, %, %, %) = (1,1,2,3); (135)
(3133270%) = (0771371) (136)

Proof. The inequalities 7 < 1 and .4 > 0 follow from (97). The bound % > 1 can be
proved by constructing an environment @ for which there is an edge k such that d.f () =
b —a. This is easy to do: o that assigns b to every edge satisfies the required property. The
bound .4} < 0 is equally easy to prove — an environment @ that assigns a to every edge
satisfies dy f(w) = O for every k.

The inequalities % < 1 and .4, > —1 follow from (98). Proposition 16 with m = 2 and
k =1 implies that dsf(®(2,1)) = —(b —a), hence % < —1. Proposition 19 implies that
U, > 1.

In addition, Proposition 19 also implies %4 > 2 and %4 > 3. The first inequality in (11)
implies that 23 < % — £ = 2.

From (100) we have .25 > —1. Proposition 16 with m = 3 and k = 2 implies that
dsf(®(3,2)) = —(b —a), which implies .25 < —1. Finally, we again use the inequality
(11) to obtain % < % — L =2—(—1) =3. O

Theorem 15. The number %, satisfies £y < —2.
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Proof. It suffices to prove that for large n, there is always an @ € {a,b}"" and a set Sy C W,
with four elements such that ds, f(w) = —2(b —a). Let S4 = {v{,v2,v3,v4}, and assume
that v4 is very far from vy, v,, and v3. We will assume that there is a path ;23 through vy,
vp, and v3, and another distant path y; through v4. We will assume that the passage time
through 7123 \ {v1,v2,v3} is L and that the passage time through ¥4\ {v4} is L+a+b. Itis
straightforward to verify that ds, (0) = —2(b —a). O

APPENDIX A. IDEMPOTENT FUNCTIONS

Proof of Proposition 3. If x € y(R), then there is z € R such that x = y(z). We now have

v(x) = y(¥(z)) = w(z) = x, hence x = y(x). This proves ¥(R) C {x €R: y(x) = x}.
The reverse inclusion is obvious. O

Proof of Proposition 4. The equality (23) will follow from the following four inclusions

v (v (Q)NER) S y(y™'(2) SONW(R) Sy (Q)NY(R)
C vy '(QnEm). (137)

The first two of the inclusions hold for all functions W and &, not just the idempotent ones.
Indeed, y~1(Q)NE(R) C w'(Q) implies the first inclusion; the relation w(y~!(Q)) C Q
holds for all y and Q, while y~!(Q) C R implies w(y~'(Q)) C w(R).

Let us now prove the third inclusion. Assume that x € QN y(R). We need to prove that
x € y~1(Q). From (22) we have x = y(x) which is sufficient to conclude that y(x) € Q.

We now prove the fourth inclusion in (137), i.e.

v I (Q)NYR) < yw(y H(Q)NER).

Letx € y~!(Q)Ny(R). We need to prove that there exists an element y of the set y~!(Q)N
E(R) such that y(y) = x. We will prove that we may take y = £(x). We must prove
that w(y) =x, y € y~1(Q), and y € £(R). The last assertion, that y € &(R), is obvious
because of our choice y = £(x). Since x € W(R), the equality (22) implies x = y(x) =
v(&(x)) = w(y), which implies the first assertion that y(y) = x. The second assertion,
y € y~1(Q), follows from y(y) = w(&(x)) = w(x) € Q, which holds due to our assumption
xey Q). O

Proof of Proposition 5. Since w*(R) U w”(R) = R, it suffices to prove the following four
inclusions

ENy“(R) € (y*) '(E), (138)
Eny'(R) < (v '(E), (139)
(w”) ()ﬁw“(R) C E, (140)
V) (E)ny'(R) < E. (141)

We will first apply (23) to y = l//“ and Q = E. We won’t use the first equality, so we don’t
have to make a choice for &.

Eny’(R) = (w*) " (E)Ny“(R) C (y*) " (E),
which implies (138). Now we use our assumptions E C E and (y?)~'(E) C (y*)"1(E).
We apply (23)to y = y? and Q = E

Eny’(R) CENy’(R) = (yv") (E)ny’(R) € (y*) " (E) C (v (E).

The last inclusion implies (139).
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We now prove (141). We apply (23) to w = y* and 9 = E.

(W) NE)ny?(R) =Eny’(R) CE.

For the proof of (140), we use the assumptions E C £ and (y*)~!(E) C (y*)~'(E) and
apply 23)toy =y“and Q=E.

(W) HE)NYAR) S (W) E)NY(R) =EN(y") (R)CECE.
This completes the proof of (140). (]

APPENDIX B. EVALUATIONS OF DERIVATIVES IN EXTREME ENVIRONMENTS

Proof of Proposition 16. Let L be the number of edges in ¥ \ S. Denote Y= (ViyeresVim)-
The passage time 7' (71, Gg(d)(m,k))) does not depend on @ € {a,b}™ and satisfies

T (}q, cg’((z)(m,k))) = Lat+m(b—a)—(m—k)(b—a). (142)
If N,( o) is the number of times that a appears in o, then
T (yg,o§<@<m,k))) = Latm(b—a)—Ny(a)(b—a). (143)
The equations (142) and (143) imply
f (cg‘(@(m,k)>) — Latm(b—a)—(b—a)max{Na(Q),m—k}.  (144)
Using (144) we now derive the formula for ds f(®(m,k)). Notice that due to (5) all terms

La+m(b — a) cancel. Hence, we can ignore them in the calculation. The formula (5)
becomes

df(@mb) = —(b—a) ('Zi(—l)i(’?)<m—k>+[=mik+l<—1>"i(rf)>.

Since ¥ o(—1)!("f) =0, the last sum turns into the following

a5f(@mK) = ~(b-a) (— oo ()m-ne ¥ “””@)

i=m—k+1 i=m—k-+1
m o m
= —(b—a) Z (=D (i—(m—k)) (z>
i=m—k+1
After the substitution j = m — i, the last equality becomes (81). (]
k—1
Proposition 25. If m > 3k, the sequence ((rj) (k—j ) o is increasing and non-negative.
j=

)
There exists my, such that for m > mg and k € [%, %1, the difference of the last two terms
is bounded below by 3m/4 e

() -2(")

%
w
Eab]

(145)
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Proof. 1t is clear that the terms are non-negative because j < k—1, hence k— j > 1. As-
sume that m > 3k and that j < k—2. We will prove that the difference of the term j+ 1

and the term j is positive.

(e (e
= G

— m(k—j—w ((m—j)— <1+k;1) (j+1)>

m! . . .
m(k—J—l)(m—J—z(H'l))-

We now use that m > 3k and k > j+ 2 to obtain

(k=)

m—j—2(j+1)>3(j+2)—3j—-2=4>0.

Let us prove (145).
m m m! m!
(k— 1> _2<k—2) T k=D m—k+1)! _Z(k—Z)!(m—k—i—Z)!
- (k—1)!(:;!—k+2)!((m*kﬂ)*z(k*l))
m!

- (k=1 (m—k+2)! (m—3k+4)

S 4m! 4 m+1

- (k—l)!(m—k—i—Z)'im—i-l k—1
k,

_ m+2— J

N m+1 ]IJI '

For each j we have mk“ I > 3 because 3k < m. Hence,

m m 4 i1 1 k
-2 > —3 — 3%
(k—l) (k—Q) - m+l1 >m—H

Since k > 2 we have
m m 35w
) 37
(k—l) <k—2> 7 et

24>
For sufficienlty large mg, we have 3"/2* > m+ 1 if m > my, which implies (145).

O

Proof of Proposition 18. Let s’ = (vi,...,v,). Recall that for a € {a,b}™, we use Na(a))
to denote the number of components that are equal to a. The environment &(m, k) is simple

enough that f (0'? (&(m,k))) depends only on Na(ﬁ).

f(eZ(@(mK) = Latm(b—a)

m—k—1, if o = (b,b,...,b)
_(b“’)'{ b).

max{m—k,N,(d})}, if & # (b,b,
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We use (5) to evaluate ds f (@(m,k)). Since each term contains La + m(b — a), these com-
ponents cancel each other. The derivative ds f(@(m,k)) becomes

m—k A m
dsf(d(mk)) = —(b—a) m—k—1+(m—k)Z(—1)'<,)

i=1 !
> (4)@(”?) . (146)
i=m—k+1 !

The last sum can be simplified as

I
3
3
ngfS
|
T
—
3
|
N

We now substitute the last identity into (146) and extract the first and the last term from
each of the summations. We obtain

Isf(@(mk)) = —(b—a)(m—k—l—(m—k)-m+m

s k<1 (m k> HZ(me;ll)> (147)
; ( >+m Z < 1)) (148)

The term (147) is equal to 0. After we apply the substitution j =i — 1 in the first summation
of (148) and the substitution j = i in the second, the last equality becomes (87). O

REFERENCES

[1] D. Ahlberg, C. Hoffman. Random coalescing geodesics in first-passage percolation, (2019) arXiv:
1609.02447

[2] T. Alberts, K. Khanin, J. Quastel. The intermediate disorder regime for directed polymers in dimension 1+1.
Ann. Probab. 42 (2014), 1212-1256.

[3] K.S. Alexander. Geodesics, bigeodesics, and coalescence in first passage percolation in general dimension.
Electron. J. Probab. 28 (2023), 1-83.

[4] S. Armstrong, P. Cardaliaguet, P. Souganidis. Error estimates and convergence rates for the stochastic ho-
mogenization of Hamilton-Jacobi equations. Journal of the American Mathematical Society, 27 (2), (2014)
479-540

[5]1 A. Auffinger, M. Damron. A simplified proof of the relation between scaling exponents in first-passage
percolation. Ann. Probab. 42 (3) (2014): 1197-1211.

[6] A. Auffinger, M. Damron, J. Hanson. 50 years of first-passage percolation, American Mathematical Soc.,
2017.

[7] Yuri Bakhtin, Douglas Dow. Differentiability of limit shapes in continuous first passage percolation models.
(2024) arXiv:2406.09652

[8] R. Basu, S. Ganguly, A Sly. Upper tail large deviations in first passage percolation Communications on Pure
and Applied Mathematics 74 (8), (2021) 1577-1640

[9] R. Basu, V. Sidoravicius, A. Sly. Rotationally invariant first passage percolation: concentration and scaling
relations. (2023) arXiv:2312.14143v1

[10] W. Beckner. Inequalities in Fourier analysis, Ann. of Math. 102 (1975), 159-182.

[11] M. Benaim and R. Rossignol. Exponential concentration for first passage percolation through modified
Poincaré inequalities. Ann. Inst. Henri Poincaré Probab. Stat. 44 (2008), 544-573. MR 2451057

[12] I. Benjamini, G. Kalai, and O. Schramm, First passage percolation has sublinear distance variance, Ann.
Probab. 31 (2003), 1970-1978.



HIGHER-ORDER DERIVATIVES OF FIRST-PASSAGE PERCOLATION 35

[13] A. Bonami. Etude des coefficients de Fourier des fonctions de L?(G), Annales de I'Institut Fourier. 20(2)
(1970) 335-02.

[14] S. Chatterjee. The universal relation between scaling exponents in first-passage percolation. Ann. of Math.
177 (2) (2013), 663-697.

[15] S. Chatterjee. Superconcentration and related topics. Springer Monographs in Mathematics, Springer,
Cham, 2014.

[16] S. Chatterjee, P.S. Dey. Multiple phase transitions in long-range first-passage percolation on square lattices.
Commun. Pur. Appl. Math., 69, (2016) 203-256.

[17] 1. Corwin, P. Ghosal, A. Hammond. KPZ equation correlations in time. Ann. Probab. 49 (2) (2021), 832—
876.

[18] J.T. Cox and R. Durrett. Some limit theorems for percolation processes with necessary and sufficient condi-
tions, Ann. Probab. 9, (1981) 583-603.

[19] M. Damron, J. Hanson, P. Sosoe. Sublinear variance in first-passage percolation for general distributions.
Probability Theory and Related Fields, 163 (1) (2015), 223-258

[20] M. Damron, J. Hanson. Bigeodesics in first-passage percolation. Comm. Math. Phys. 349(2), (2017) 753—
776.

[21] A. Davini, E. Kosygina, A. Yilmaz. Stochastic homogenization of nonconvex viscous Hamilton-Jacobi
equations in one space dimension. Commun. Partial Differ. Equ., 49, (2023) 698-734.

[22] B. Dembin, D. Elboim, R. Peled. Coalescence of geodesics and the BKS midpoint problem in planar first-
passage percolation. Geometric and Functional Analysis, 34, (2024) 733-797

[23] J.M. Hammersley, D.J.A. Welsh. First-passage percolation, subadditive processes, stochastic networks, and
generalized renewal theory. Proc. Internat. Res. Semin., Statist. Lab., Univ. California, Berkeley, Calif,
Springer-Verlag, New York, 1965, 61-110.

[24] C. Hoffman. Geodesics in first passage percolation. Ann. Appl. Probab. 18 (5), (2008) 1944—1969.

[25] C.D.Howard, C.M. Newman. Euclidean models of first-passage percolation Probability Theory and Related
Fields 108, (1997) 153-170

[26] K. Johansson. Shape Fluctuations and Random Matrices, Comm. Math. Phys. 209, (2000) 437-476.

[27] H. Kesten. On the speed of convergence in first-passage percolation, Ann. Appl. Probab. 3, (1993) 296-338.

[28] A. Krishnan, F Rassoul-Agha, T. Seppalainen. Geodesic length and shifted weights in first-passage perco-
lation. Communications of the American Mathematical Society 3 (05), (2023) 209-289

[29] I. Matic, J. Nolen. A sublinear variance bound for solutions of a random Hamilton-Jacobi equation. Journal
of Statistical Physics, 149 (2), (2012), 342-361.

[30] I. Matic, R. Radoicic, D. Stefanica. Lower bound for a fourth-order derivative of first-passage percolation
with respect to the environment. in preparation, (2025).

[31] C.M. Newman, M.S.T. Piza. Divergence of shape fluctuations in two dimensions. Ann. Probab. 23, (1995)
977-1005.

[32] F. Rezakhanlou, J.E. Tarver. Homogenization for stochastic Hamilton-Jacobi equations. Arch. Ration. Mech.
Anal., 151(4), (2000) 277-309.

[33] T. Seppalainen. Existence, uniqueness and coalescence of directed planar geodesics: proof via the
increment-stationary growth process. Ann. Inst. Henri Poincare Probab. Stat. 56 (3), (2020) 1775-1791.

[34] M. Talagrand, On Russo’s approximate zero-one law. Ann. Probab. 22, (1994) 1576-1587.

[35] C.A. Tracy, H. Widom. Level spacing distributions and the Airy kernel. Commun. Math. Phys. 159, (1994)
151-174.

[36] N. Zygouras. Directed polymers in a random environment: A review of the phase transitions. Stochastic
Processes and their Applications, 177, (2024) 104-431

BARUCH COLLEGE, CITY UNIVERSITY OF NEW YORK
Email address: ivan.matic@baruch.cuny.edu

BARUCH COLLEGE, CITY UNIVERSITY OF NEW YORK
Email address: rados .radoicic@baruch.cuny.edu

BARUCH COLLEGE, CITY UNIVERSITY OF NEW YORK
Email address: dan.stefanica@baruch.cuny.edu



