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Abstract. Excited deterministic walk in a random environment is a non-Markov integer-valued process

(Xn)∞n=0, whose jump at time n depends on the number of visits to the site Xn. The environment can

be understood as stacks of cookies on each site of Z. Once all cookies are consumed at a given site, every
subsequent visit will result in a walk taking a step according to the direction prescribed by the last consumed

cookie. If each site has exactly one cookie, then the walk ends in a loop if it ever visits the same site twice.

If the number of cookies per site is increased to two, the walk can visit a site x arbitrarily many times before
getting stuck in a loop, which may or may not contain x. Nevertheless the moments of Xn are sub-linear in

n and we establish monotonicity results on the environment that imply large deviations.

1. Introduction

The excited deterministic walk in a random environment (EDWRE) in dimension d ≥ 1 is a discrete time

process, (Xn)∞n=0 : Ω→
(
Zd
){0,1,...}

. For L,M ∈ N, the set of environments is

Ω = Ω(L,M) =

{
ω ∈

(
[−L,L]d

)Z≥0×Zd
:

ω(j, z) = ω(M − 1, z) for each j ≥M − 1 and each z ∈ Zd
}
,

where [a, b] := {a, a+ 1, . . . , b}. We imagine Ω as stacks of M cookies, ω(0, z), . . . , ω(M − 1, z), at each site
z ∈ Zd, each with an arrow pointing to an element of the cube [−L,L]d. We assume that Ω is equipped
with the product measure P = PL,M such that {ω(j, z) : j ∈ [0,M − 1], z ∈ Zd} are i.i.d. with distribution
µ supported on [−L,L]d. Note the abuse of notation here, that ω ∈ Ω is both an element of the set of
environments, and a random element (via the identity map) with distribution P. We further assume that
µ(k) > 0 for all k ∈ [−L,L]d \ {0}.

To define the excited deterministic walk in a random environment, first let Ln(z) = Ln(ω, z) denote the
number of times that the walker visited z in the time interval [0, n− 1],

Ln(z) = |{0 ≤ j < n : Xj = z}| ,

where |A| denotes the cardinality of the set A. For each ω ∈ Ω, we define Xn = Xn(ω) recursively as

X0 = 0,

Xn+1 = Xn + ω(Ln(Xn), Xn).

The main result of this paper is the large deviations estimate of the probability that Xn is located at a
distance of order O(n) from the origin when d = 1.

Theorem 1. Assume that d = 1 and fix M ≥ 3. There exists a function φ : [0, L]→ (−∞, 0] such that for
each λ ∈ [0, L]

lim
n→∞

1

n
logP (Xn ≥ λn) = φ(λ).(1)
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Remark 1. The assumption of an i.i.d. environment can be weakened slightly, and we make this assumption
merely for the ease of exposition. For instance, Theorem 1 holds if each ‘layer’ of cookies has a different
distribution. That is, we have M distributions, µ0, . . . , µM−1, such that µj(k) > 0 for all k ∈ [−L,L] \ {0},
ω(j, z) ∼ µj for j ∈ [0,M − 1] and z ∈ Z, and {ω(j, z) : j ∈ [0,M − 1], z ∈ Z} are independent. In this case,
the only change required in the proof is to redefine µmin appearing near the start of Section 2 as

µmin = min{µj(k) : k ∈ [−L,L] \ {0}, j ∈ [0,M − 1]}.

This generalization more closely resembles the models of excited random walks, which we discuss below.

Remark 2. The function φ is concave on [0, L], with φ(0) = 0 and φ(λ) < 0 for λ ∈ (0, L]. This is proved
in section 6.

Remark 3. We expect Theorem 1 to hold when M = 2, and can prove that it does when L ≤ 2. However,
our proof for M ≥ 3 does not work when M = 2 and L ≥ 3. The case M = 1 was proved using a different
method in [11].

The model studied in this paper is a generalization of deterministic walk in random environment (DWRE)
[11] in the same way as excited random walk (ERW) generalizes random walk by allowing several cookies
on each site [3]. The model of DWRE traces its origins to the study of stochastic partial differential
equations. The viscosity solutions to random Hamilton-Jacobi and Hamilton-Jacobi-Bellman equations can
be represented using variational formulas [1, 7, 17]. The controls in the formulas are solutions to ordinary
differential equations or stochastic differential equations in random environments whose discrete analogs are
deterministic walks in random environments (DWRE) and random walks in random environments (RWRE),
respectively [16].

Large deviations for RWRE and EWR were studied in the past and various results were obtained [12, 15,
20, 21, 22]. The approaches from these papers cannot be applied to DWRE or EDWRE because the latter
models do not possess the quenched ellipticity property. Results related to the laws of large numbers for
non-elliptic random walks were established in [4]. In the case of RWRE, one can assume ellipticity and use
the point of view of the particle to see the process as a Markov chain on a probability space with sufficient
compactness to apply the Donsker–Varadhan theory [19, 21]. Large deviations analogous to Theorem 1, but
in all dimensions, were proved for DWRE by an analysis of loops [11]. However, this loop analysis is not
applicable to large deviations of EDWRE.

The model of excited random walk was first introduced by Benjamini and Wilson [3] in which the nearest-
neighbor random walk was perturbed by adding a cookie to each site of Z. In later studies the random walks
in random environments were modified by adding multiple cookies to each of the sites and a number of results
were established about recurrence, ballisticity, monotonicity, and return times to zero [2, 6, 8, 9, 10, 13].
Some of these excited random walks are known to converge to Brownian motion perturbed at extrema [5].
The above results that study the behavior for large n cannot be generalized for our walks if M is kept fixed.
One of the properties of EDWRE is almost sure boundedness. However, it is unknown whether different
modes of convergence may occur if the assumption M <∞ is changed to an assumption that each site has a
finite (but not uniformly bounded) random number of cookies. For the ERW the finiteness of the expected
return time to 0 depends on the average drift per site [10]. The return time to 0 for EDWRE is infinite with
positive probability. However, conditioned on the event that the walker returns to 0, it is unknown what the
expected lengths of the excursions are.

Large deviations for random walks in random environments were studied in [14]. In the case of random
walks in excited random environments very little is known in higher dimensions. The methods are often
restricted to nearest-neighbor walks. Our main proof is also restricted to one dimension, however we are
allowing our walk to make jumps of sizes bigger than 1.

The case M = 1 corresponds to DWRE and Theorem 1 can be obtained in arbitrary dimension d [11].
The main argument of the proof used the fact that once the walk visits a site it has visited before, it will
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Figure 1. The environment described in Example 1.

end in a loop. This can be simply stated as the 0 − 1−∞−principle, meaning that in DWRE the number
of times a given site can be visited by the walk is zero, one, or infinity. However, we will see in Theorem 2
that EDWRE is a much richer model, and that a site can be visited arbitrarily many times.

The key ingredient in the proof of Theorem 1 is Lemma 4 that establishes a monotonicity property among
favorable environments. A configuration of cookies on Z is called a favorable environment if it enables the
walk starting at 0 to reach λn in fewer than n steps. Lemma 4 states that for every favorable environment
one can change several cookies in [0, O(

√
n)] to make another favorable environment that also allows the

walk to avoid any backtrackings over 0. This result was the key to establishing a sub-additivity necessary
for proving large deviations.

In the case when the maximal jump size is L = 2 one can replace O(
√
n) in Lemma 4 with a finite number.

It remains unknown whether O(
√
n) can be replaced by a finite number when L ≥ 3.

Before delving into properties of the model, it is instructive to consider one concrete example.

Example 1. Assume that the random environment is created in the following way. Each site of Z indepen-
dently choses a sequence of two integers from {−3,−2, . . . , 3}. In the example depicted by Figure 1, the site
0 has cookies (−3, 2), while the site 2 has cookies (−2, 1). We will denote the cookies at 0 by ω(0, 0) = −3
and ω(1, 0) = 2. Similarly, ω(0, 2) = −2 and ω(1, 2) = 1.

If the cookies are as shown in the picture above, then the first 10 steps of the walk are X0 = 0, X1 = −3,
X2 = 0, X3 = 2, X4 = 0, X5 = 2, X6 = 3, X7 = 0, X8 = 2, X9 = 3, and X10 = 5.

2. Properties of excited walks

The results in this section serve to outline some of the major differences between excited and non-excited
walks. In this section we will restrict ourselves to the case d = 1. In regular non-excited deterministic walks
in random environments, the number of visits to any particular site can be 0, 1, or infinity. The last case
corresponds to the situation in which the walk ends in a loop passing through a prescribed number of sites
infinitely many times. In an excited environment, the walker may revisit 0, for instance, any number of times
1, 2, . . . ,∞. However, the probability of revisiting 0 a large finite number of times decays exponentially, as
the next theorem demonstrates. For convenience, we let

µmin = min{µ(k) : k ∈ [−L,L] \ {0}}.
Theorem 2. Assume that L ≥ 2 and M ≥ 2. Let D0 be the cardinality of the set {n : Xn = 0}. For each
k ∈ N the following inequality holds

(µmin)4Mk ≤ P (D0 = k) ≤ 2
(
1− (µmin)2M+L−2)k/2LM

Remark 4. In the case L = 1, D0 ∈ {1, . . . , 2M −1,∞}. To see this, observe that on the M th visit to 0, all
cookies but the last have been consumed. Assume the last cookie points to the right. The site 0 can be visited
at most M − 1 additional times without being caught in a loop if the top M − 1 cookies at 1 all point left,
and the last cookie points right. It is easy to construct environments that attain each of these values, but it
is an interesting problem to compute the distribution of D0.
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Proof. The lower bound follows from Lemma 1 below.

Lemma 1. There exist two functions f, g : Z → {−2,−1, 1, 2} such that the deterministic sequence xn
defined by x0 = 0 and

xn+1 = xn +

{
f(xn), if xn ∈ {x0, . . . , xn−1},
g(xn), if xn 6∈ {x0, . . . , xn−1}

contains exactly k terms equal to 0 and has −2k ≤ xn ≤ 2k − 1 for all n.

Indeed, if we find two such functions, then the event E ⊂ {D0 = k} can be constructed as follows:

E = {ω ∈ Ω : ω(0, z) = g(z) and ω(i, z) = f(z) for i ≥ 1 and − 2k ≤ z ≤ 2k − 1} .

We have P (E) ≥ (µmin)4Mk > 0, so P (D0 = k) ≥ (µmin)4Mk.

For the upper bound, suppose that V j0 is the time of the jth visit to 0 (so V 1
0 = 0). If V k0 < ∞ and

V k+1
0 =∞, then the walker cannot get stuck in a loop that includes 0, and the number of visits to 0 must be
k. Therefore, between consecutive visits to 0, the walker must see at least one new cookie, otherwise it will

be stuck in a loop containing 0. That is, for each 0 ≤ j ≤ k − 1, there exists x ∈
{
XV j0

, XV j0 +1, . . . , XV j+1
0

}
such that LV j0

(x) ≤ M − 1. Therefore, by time V k0 , the walker must have visited at least k/M distinct

vertices. Furthermore, this implies that the walker must have visited at least k/LM regions of the form
[iL, (i+ 1)L− 1] for i ∈ Z. That is,∣∣{i ∈ Z : [iL, (i+ 1)L− 1] ∩ {Xt : 0 ≤ t ≤ V k0 } 6= ∅

}∣∣ ≥ k

LM
.

In order for the walker to revisit 0 at time V k0 , none of the regions [iL, (i+ 1)L− 1] that the walker visits
before this time can be a trap where the walker gets stuck in a loop. An example of a trapping configuration
on the interval [iL, (i + 1)L − 1] has ω(j, iL) = 1 = −ω(j, iL + 1) for j ≥ 0 and ω(0, iL + x) = −x
for x = 2, . . . , L − 1. Therefore, the probability that [iL, (i + 1)L − 1] is a trapping region is at least
(µmin)2M+L−2.

Finally, observe that the set of i ∈ Z such that the walker visits [iL, (i+1)L−1] by time V k0 must be a set of
consecutive integers containing 0, since the walker cannot jump over any such region. Therefore, the walker
must either visit every such region for 0 ≤ i ≤ k/2LM − 1, or every such region for −k/2LM + 1 ≤ i ≤ 0.
The probability that none of these regions is a trap gives the upper bound. �

Proof of Lemma 1. Let us first define f and g on the set Z− of negative numbers, i.e. Z− = {−1,−2,−3, . . .}.
If z ∈ Z− is odd we set f(z) = g(z) = 2, and if z ∈ Z− is even we set f(z) = −2 and g(z) = 1.

For i ∈ {0, 1, . . . , 2k − 3} we define

g(i) =

{
−2, if i is even,
−1, if i is odd;

and f(i) =

{
−2, if i is even,

2, if i is odd.

We finally define f(2k− 1) = g(2k− 1) = −1 and f(2k− 2) = g(2k− 2) = 1. The values of f(i) and g(i) for
i ≥ 2k are irrelevant, and can be set to any value. The environment corresponding to g and f is shown in
Figure 2.

We will prove that x2i(i+1) = 0 for i ∈ {0, 1, 2, . . . , k−1} and that all other terms of the sequence (xn)∞n=0

are non-zero.
We will now use induction on i to prove that for each i ∈ {0, 1, . . . , k − 1} the following holds:

x2i(i+1) = 0 and

{x0, . . . , x2i(i+1)} = {−2i,−2i+ 1, . . . , 0, 1, . . . , 2i− 1}.(2)

This is easy to verify for i = 0 and i = 1. Assume that the statement is true for some i and let us prove
it for i+ 1.
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Figure 2. Part of the environment constructed in the proof of Lemma 1. The values of the
top cookies are given by the function g, while the bottom cookies are given by the function
f . In this environment, the walker will return to 0 at least 5 times (after the 5th return, it
moves to the left of −10).

Let us denote Ri = {x0, . . . , x2i(i+1)} = {−2i, . . . , 2i−1}. Then we have that x2i(i+1) = 0, and since 0 ∈ Ri
we have that x2i(i+1)+1 = 0 + f(0) = −2. Since −2 ∈ Ri we get x2i(i+1)+2 = −2 − 2 = −4, and so on. We
obtain that x2i(i+1)+i = −2i ∈ Ri which implies that x2i(i+1)+i+1 = −2i− 2 6∈ Ri. Therefore x2i(i+1)+i+2 =
−2i−2+g(−2i−2) = −2i−2+1 = −2i−1 6∈ Ri. Hence x2i(i+1)+i+3 = −2i−1+g(−2i−1) = −2i+1 ∈ Ri.
This implies that x2i(i+1)+i+4 = −2i + 3 ∈ Ri. Continuing this way we obtain that x2i(i+1)+i+2i+2 =
2i − 1 ∈ Ri and x2i(i+1)+i+2i+3 = 2i + 1 6∈ Ri. Therefore x2i(i+1)+3i+4 = 2i + 1 + g(2i + 1) = 2i 6∈ Ri and
x2i(i+1)+3i+5 = 2i+ f(2i) = 2i− 2 ∈ Ri.

We now have x2i(i+1)+3i+6 = 2i − 4 ∈ Ri and continuing this way we obtain x2i(i+1)+3i+i+4 = 0. This
implies that x2i(i+1)+4(i+1) = 0 which is the same as x2(i+1)(i+2) = 0. In addition,

{x0, . . . , x2(i+1)(i+2)} = Ri ∪ {−2(i+ 1),−2i− 1, 2i, 2i+ 1} = {−2i− 2, . . . , 2i, 2i+ 1}

thus the proof of (2) is complete.
Placing i = k−1 in the first equation in (2) we obtain x2k(k−1) = 0, and similarly as in the previous proof

we get that x2i(i+1)+3i+4 = 2i = 2k − 2. However, since g(2k − 2) = 1 we get that x2i(i+1)+3i+5 = 2k − 1
and subsequently that x2i(i+1)+3i+6 = 2k − 1 + g(2k − 1) = 2k − 2. This implies that x2i(i+1)+3i+7 =
2k − 2 + f(2k − 2) = 2k − 1 and x2i(i+1)+3i+8 = 2k − 1 + f(2k − 1) = 2k − 2. From now on the sequence is
periodic and none of the terms will be zero.

This proves that there are exactly k terms equal to 0, and since it is stuck in a loop, no vertices outside
[−2k, 2k − 1] are visited. �

3. Laws of large numbers

In this section we assume that the walk is in Rd for any d ∈ N. We prove that the walk is almost
surely bounded. As a consequence, the law of large numbers holds with the limiting velocity equal to 0.
Moreover, all of the moments of the process Xn have growth that is slower than any function f(n) that
satisfies limn→∞ f(n) = +∞. This means that the central limit theorem also does not have the classical
form for this model.

The following lemma will be essential for the proofs of the boundedness of the walk. This lemma establishes
the exponential decay of the probabilities that the walk reaches the annulus Ak defined in the following way:

Ak = [−(k + 1)L, (k + 1)L]
d \ [−kL, kL]

d
.

This way, A0 is the hypercube [−L,L]d, while for k ≥ 1, Ak is an annulus.
For any set A ⊆ Rd let us define

TA = inf {n : Xn ∈ A} .
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Lemma 2. There exists a positive real number c ∈ (0, 1) and an integer k0 such that

P (TAk < +∞) ≤ ck

holds for all k ≥ k0.

Proof. For each x ∈ Zd, let x+ 6= x be an arbitrarily chosen vertex from the set

{y ∈ Zd : ‖y‖∞ ≥ ‖x‖∞ and ‖x− y‖∞ ≤ L},
where ‖x‖∞ denotes the largest coordinate of x in absolute value. Observe that if x is outside the hypercube
[−kL, kL]d, then so is x+, and that x+ can be reached by the walker in one step from x. Denote by G(x)
the event that all cookies at x point to x+, and all cookies at x+ point to x. That is,

G(x) =
{
ω(j, x) = x+ − x and ω(j, x+) = x− x+ for all 0 ≤ j ≤M − 1

}
.

On the event G(x), the walk would get stuck in a loop between x and x+ if it ever reached the site x.
We obviously have the following relation,

P
(
TAk+1

< +∞
)
≤ P

(
TAk < +∞, G

(
XTAk

)C)
.

The Lemma will be established once we prove that for every k ≥ 0 the following inequality holds:

P
(
TAk < +∞, G

(
XTAk

)C)
≤

(
1− µ2M

min

)
· P (TAk < +∞) .(3)

For each x ∈ Ak let us introduce the event

Ωx =
{
TAk < +∞ and XTAk

= x
}
.

The event Ωx is in the sigma field generated by the cookies inside the set A0 ∪ · · · ∪ Ak−1. Therefore, Ωx
and G (x) are independent.

We now have

P
(
TAk < +∞, G

(
XTAk

)C)
=

∑
x∈Ak

P
(

Ωx ∩G (x)
C
)

=
∑
x∈Ak

P (Ωx) · P
(
G (x)

C
)

≤
(
1− µ2M

min

)
·
∑
x∈Ak

P (Ωx)

=
(
1− µ2M

min

)
· P (TAk < +∞) .

This completes the proof of (3), and hence the proof of the required inequality. �

A consequence of Lemma 2 is that the sequence Xn is almost surely bounded. We present this result in
the following lemma.

Lemma 3. Denote by B the event that Xn is a bounded sequence. More precisely, B = {∃M0 such that
‖Xn‖∞ ≤ M0 for all n ≥ 0}, where ‖x‖∞ denotes the biggest coordinate of the d-dimensional vector x in
absolute value. Then P (B) = 1.

Proof. On the event BC we must have {TAk < +∞} for all k ∈ N. However, Lemma 2 implies that
P (TAk < +∞) < ck for each k ≥ k0, hence

P
(
BC
)

= P

⋂
k≥1

{TAk < +∞}

 ≤ ck,
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for every k ≥ k0 which is only possible if P
(
BC
)

= 0. �

Corollary 1. For every function f : N→ R such that limn→∞ f(n) = +∞ the following limit holds almost
surely:

lim
n→∞

‖Xn‖∞
f(n)

= 0.

4. Large deviations

In this section we prove Theorem 1, and henceforth take d = 1. For λ ∈ [0, L] we want to show the

existence of the limit lim
n→∞

1

n
logP (Xn ≥ λn). As stated earlier, we will prove this under the assumption

that there are at least 3 cookies on each site, i.e. M ≥ 3. Before we can prove the theorem we need to
introduce the following notation. For k ∈ N and x ∈ Z let us denote by V kx the time of the kth visit to the
site x. The hitting time V kx can be inductively defined as:

V 1
x (ω) = inf{m : Xm(ω) = x},

V i+1
x (ω) = inf{m > V ix(ω) : Xm(ω) = x} for i ≥ 1.

Instead of V 1
x we will often write Vx. As introduced earlier, for any set A ⊆ R we will denote its hitting time

by TA = inf{n : Xn ∈ A}. If x > 0 we will write Tx instead of T[x,+∞). The following two inequalities are
easy to establish:

P (Xn ≥ λn) ≤ P (Tλn ≤ n) and(4)

P (Xn ≥ λn) ≥ P (Tλn ≤ n, ω(j, x) = +1 for all j and x ∈ [λn, λn+ L])(5)

≥ CP (Tλn ≤ n) ,

for some constant C independent of n. Therefore, it is sufficient to prove that lim
n→∞

1

n
logP (Tλn ≤ n) exists.

Let

An :=

{
Tλn ≤ n, inf

k≤Tλn
Xk ≥ 0

}
denote the event that the walk reaches λn by time n before backtracking to the left of 0. It is trivially true
that An ⊂ {Tλn ≤ n} so P (An) ≤ P (Tλn ≤ n).

4.1. Definitions. If a = (a`)
K
`=1 ∈ ZK where K ∈ N ∪ {∞} and B ⊂ Z, then the restriction of a to B is

denoted a
∣∣
B

, and is the sequence of terms in a that belong to B with their order intact. For t1 ≤ t2, let

X[t1,t2](ω) = (Xt1(ω), Xt1+1(ω), . . . , Xt2(ω))

denote the sequence of locations of the walker from steps t1 through t2.

Definition 1. For ω, ω′ ∈ {T` <∞} and 0 ≤ m < `, let ω′ ≺`,m ω denote the following relationship between
environments ω and ω′.

(1) ω′(j, x) = ω(j, x) for all x > m and all j ≥ 0;
(2) X[0,T`(ω′)](ω

′)
∣∣
[m,`]

= X[0,T`(ω)](ω)
∣∣
[m,`]

;

(3) The sequence X[0,T`(ω′)](ω
′) is a subsequence of X[0,T`(ω)](ω).

In other words, we will write ω′ ≺`,m ω if (1) the two environments are identical to the right of m, (2) the
walkers on both environments visit the same sites in the same order to the right of m and until exceeding
`, but (3) the walker on ω′ may avoid some parts of the path followed by the walker on ω to the left of m.
Observe that ≺`,m gives a partial ordering of the environments in {T` <∞}.
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4.2. Monotonicity results. The next theorem provides the asymptotic equivalence of probabilities P (Tλn ≤ n)
and P (An) on the logarithmic scale.

Theorem 3. There exists C ∈ R+, depending on L,M and µ, such that the following inequality holds for
all n:

C
√
nP (An) ≥ P (Tλn ≤ n) .(6)

Proof. We will use the following result whose proof will be presented later.

Lemma 4. Assume that n >
(
2L
λ

)2
. For each ω ∈ {Tλn ≤ n} there exists ω′ ∈ {Tλn ≤ n} such that

ω′ ≺λn,2L√n ω and X[0,Tλn(ω′)](ω
′) ∩ (−∞,−1] = ∅.

For given ω ∈ {Tλn ≤ n} we can apply Lemma 4 to obtain a new environment ω̂ ∈ {Tλn ≤ n} such that

inf
0≤k≤Tλn(ω̂)

Xk(ω̂) = 0.

Let us denote by ω̃ the environment defined by:

(i) For x 6∈ [0, 2L
√
n] and j ∈ {0, . . . ,M − 1}: ω̃(j, x) = ω(j, x).

(ii) For x ∈ [0, 2L
√
n] and j ∈ {0, . . . ,M − 1}: ω̃(j, x) = ω̂(j, x).

Since ω̂ and ω̃ coincide on sites in [0,+∞) and X(ω̂) does not visit negative sites, we conclude that X(ω̃)
does not visit negative sites. Therefore, for each ω ∈ {Tλn ≤ n} there exists ω̃ ∈ An such that ω and ω̃
coincide on all sites except possibly for the sites in [0, 2L

√
n].

We can now define a function f : {Tλn ≤ n} → An in the following way. For each ω ∈ {Tλn ≤ n} we pick
one ω̃ with the properties established in the previous paragraph and define f(ω) = ω̃.

Let us fix n. We can now define Pn on the restriction Ωn of Ω that corresponds to the portion of the
integer axis between the numbers −Ln and Ln. The purpose of this restriction is so that Pn(ω) > 0 for each
ω ∈ Ωn. Formally,

Ωn = [−L,L][0,M−1]×[−Ln,Ln],

and Pn is defined to be the restriction of P. Then we have Pn (Tλn ≤ n) = P (Tλn ≤ n) and Pn(An) = P (An),
where each ω ∈ Ω is identified with an element of Ωn by truncation, which will also be denoted ω. It suffices
to prove that there is C ∈ R+ (independent of n) such that

Pn (Tλn ≤ n) ≤ C
√
nPn(An).(7)

Observe that if environment ω′ ∈ Ωn differs from environment ω ∈ Ωn at exactly one site, z ∈ [−Ln,Ln],

then Pn(ω) ≤ Pn(ω′)/(µmin)M . Let C1 =
(

1
µmin

)M
and C2 = (2L + 1)M . We will prove inequality (7) for

C = (C1C2)
2L

.

Pn (Tλn ≤ n) =
∑

ω∈{Tλn≤n}

Pn(ω) ≤
∑

ω∈{Tλn≤n}

C
2L
√
n

1 Pn(f(ω))

= C
2L
√
n

1

∑
ω∈{Tλn≤n}

∑
ω′∈An

Pn(ω′) · 1f(ω)=ω′

= C
2L
√
n

1

∑
ω′∈An

∑
ω∈{Tλn≤n}

Pn(ω′) · 1f(ω)=ω′

= C
2L
√
n

1

∑
ω′∈An

Pn(ω′) ·
∑

ω∈{Tλn≤n}

1f(ω)=ω′

= C
2L
√
n

1

∑
ω′∈An

Pn(ω′) ·
∣∣{f−1(ω′)

}∣∣ .
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If f(ω) = ω′ then the environments ω and ω′ coincide outside of [0, 2L
√
n]. Since there could be at most

C
2L
√
n

2 different environments that coincide with ω outside of [0, 2L
√
n], we obtain

Pn (Tλn ≤ n) ≤ C2L
√
n

1 · C2L
√
n

2

∑
ω′∈An

Pn(ω′) = C
√
nPn(An).

This completes the proof of inequality (7) which implies (6). �

In order to prove Lemma 4 we first need to establish the following result.

Lemma 5. Fix ω ∈ Ω. Suppose a, b ∈ Z with |a− b| ≤ L, and 0 ≤ ta < tb are such that Xta(ω) = a,
Xtb(ω) = b, and one of the following two conditions is satisfied:

(a) Lta(ω, a) < M − 1;
(b) Xta+1(ω) = b.

Then there exists ω′ ∈ Ω such that

(i) X[0,ta](ω
′) = X[0,ta](ω);

(ii) X[ta+1,∞)(ω
′) = X[tb,∞)(ω);

(iii) ω′(j, x) = ω(j, x) for all x /∈ X[ta,tb](ω) and all j ≥ 0.

Furthermore, if ω contains no self-loop cookies (ω(j, x) = 0) and a 6= b, then ω′ also contains no self-loop
cookies.

Proof. Let Cx = Ltb(ω, x)−Lta(ω, x) be the number of times the site x is visited by the sequenceX[ta,tb−1](ω).
Under the assumption (a) we obtain the environment ω′ from ω by removing the cookies visited by the walker
X(ω) in the time interval [ta + 1, tb] and rewiring the top cookie at a at time ta to point at b. That is,

ω′(j, x) =



ω(j, x) for x /∈ X[ta,tb](ω) and all j ≥ 0

ω(j, x) for x ∈ X[ta,tb](ω), 0 ≤ j < Lta(ω, x)

ω(j + Cx, x) for x ∈ X[ta,tb](ω), x 6= a, j ≥ Lta(ω, x)

ω(j + Ca, a) for x = a, j > Lta
b− a for x = a, j = Lta(ω, a).

From the definition of ω′, it is clear that (iii) is satisfied, and (i) is satisfied because, from the perspective of
the walker, ω′ and ω are identical up until time ta. Finally, (ii) is satisfied because the remaining environments
at time tb in X(ω) and at time ta + 1 in X(ω′) are identical. The assumption (a) guarantees that rewiring
the top cookie at a is allowed. (Without this assumption we would be rewiring the cookie labeled (M − 1),
which would modify all cookies j ≥M − 1, thus affecting the future path of the walk.)

If (b) is assumed instead of (a), then no rewiring is necessary since the cookie at a at the time ta points to
b in both ω and ω′, i.e. ω (Lta + Ca, a) = b− a and we can keep the same definition for ω′ as when working
under the assumption (a). �

Proof of Lemma 4. Fix ω ∈ {Tλn ≤ n}, and let

G(ω) =
{
ω′ ∈ {Tλn ≤ n} : ω′ ≺λn,2L√n ω

}
.

Observe that ω ∈ G(ω), so G(ω) 6= ∅. Choose σ ∈ G(ω) such that

Tλn(σ) = min
ω′∈G(ω)

Tλn(ω′).(8)

Such a σ exists because Tλn(ω′) is an integer for each ω′. If X[0,Tλn(σ)](σ) ∩ (−∞,−1] = ∅ we may take
ω′ = σ. Assume therefore that there exists x < 0 such that x ∈ X[0,Tλn(σ)](σ). Let us define

α1 = max {0 ≤ k < Vx(σ) : Xk(σ) > x} , a1 = Xα1(σ),

β1 = min {k > Vx(σ) : Xk(σ) > x,Xk(σ) 6= a1} , b1 = Xβ1
(σ).
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Figure 3. The walker must travel a long distance (at least L
√
n) between the second and

third visits to a site marked ai ≤ L
√
n. Each of these excursions takes at least

√
n steps.

The times α1 and β1 are well defined because x < 0 and σ ∈ {Tλn ≤ n}. The constraint Xk(σ) 6= a1 in the
definition of β1 is to guarantee b1 6= a1, so we avoid using a self-loop when rewiring via Lemma 5. Clearly,
a1 ∈ (x, x + L], b1 > x and |a1 − b1| ≤ L. Assume that Lα1

(σ, a1) < M − 1. Then we can apply Lemma 5
to a = a1, b = b1, ta = α1, and tb = β1. The application of the lemma allows us to obtain an environment
σ′ ∈ {Tλn ≤ n} from the original environment σ such that σ′ ≺λn,2L√n σ. Since one visit to x is avoided in
σ′ we would have Tλn(σ′) ≤ Tλn(σ)− 1, which contradicts (8). Therefore we must have Lα1

(σ, a1) ≥M − 1
(recall that this means the walker is visiting a1 for at least the M th time at step α1). We now consider the
sequence of times V 1

a1(σ), V 2
a1(σ), . . . , VMa1 (σ) at which the visits to a1 have occurred. Assume that for some

s ∈ {1, . . . ,M − 1} we have

X[V sa1 (σ),V
s+1
a1

(σ)](σ) ⊆
(
−∞, 2L

√
n
]
.

By applying Lemma 5 (with assumption (b)) to a = XV sa1
(σ)−1, b = a1, ta = V sa1(σ)− 1, and tb = V s+1

a1 we

obtain an environment σ′ ∈ {Tλn < n} such that σ′ ≺λn,2L√n σ and LTλn(σ′)(σ
′, a1) ≤ LTλn(σ)(σ, a1) − 1,

which contradicts (8).
Let us now define

α2 = max
{

0 ≤ k < V 2
a1(σ) : Xk(σ) > a1

}
, a2 = Xα2(σ),

β2 = min
{
k > V 2

a1(σ) : Xk(σ) > a1, Xk(σ) 6= a2
}
, b2 = Xβ2

(σ).

Note that we must have a1 ≤ x+L < L
√
n. We can be certain that α2 is well defined becauseX[V 1

a1
(σ),V 2

a1
(σ)]∩

(2L
√
n,+∞) 6= ∅. The time β2 is also well defined because σ ∈ {Tλn ≤ n}. According to the construction

we must have a2 ∈ (a1, a1 + L], b2 > a1 and |a2 − b2| ≤ L.
Using the same argument as above we have that Lα2(σ, a2) ≥M−1, and that for each s ∈ {1, 2, . . .M−1}

we have

X[V sa2 (σ),V
s+1
a2

(σ)](σ) ∩
(
2L
√
n,+∞

)
6= ∅.

Having defined a1 < · · · < ai and assuming that ai < L
√
n we inductively define the times αi+1 and βi+1 in

the following way:

αi+1 = max
{

0 ≤ k < V 2
ai(σ) : Xk(σ) > ai

}
, ai+1 = Xαi+1(σ)

βi+1 = min
{
k > V 2

ai(σ) : Xk(σ) > ai, Xk(σ) 6= ai+1

}
, bi+1 = Xβi+1

(σ).

Clearly, ai+1 ∈ (ai, ai + L], bi+1 > ai and |ai+1 − bi+1| ≤ L. As above, we are certain that

Lαi+1(σ, ai+1) ≥M − 1,(9)

and for each s ∈ {1, 2, . . . ,M − 1} the following property holds:

X[
V sai+1

(σ),V s+1
ai+1

(σ)
](σ) ∩

(
2L
√
n,+∞

)
6= ∅.(10)
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We can continue the induction until we have x < a1 < · · · < aI where I is the smallest index such that
aI ≥ L

√
n. Since ai+1 − ai ≤ L for each i ≤ I − 1, we must have I ≥

√
n. From (9), we have that for

each i ≤ I − 1, before the second visit to the site ai, the walk X(σ) visits the site ai+1 at least M times.
Furthermore, (10) implies that V s+1

ai (σ) − V sai(σ) ≥
√
n for each i ≤ I and s ≤ M − 1, that is, the walk

spends at least
√
n steps between consecutive visits to each site ai.

Now we will use our assumption that M ≥ 3. We know that a1 is visited at least three times before
x is visited for the first time. Between the second and third visit to a1 the walk spent at least

√
n steps,

as depicted in Figure 3. Therefore Vx(σ) ≥ V 3
a1(σ) ≥ V 2

a1(σ) +
√
n. The second visit to a1 has occurred

after the site a2 is visited at least M times, hence the second visit to a1 occurred after the third visit to
a2. Therefore V 2

a1(σ) ≥ V 3
a2(σ) ≥ V 2

a2(σ) +
√
n. Thus Vx(σ) ≥ V 2

a2(σ) + 2
√
n. Since the second visit to a2

occurred after M visits to a3 we know that the second visit to a2 occurred after the third visit to a3. Thus
V 2
a2(σ) ≥ V 3

a3(σ) ≥ V 2
a3(σ) +

√
n and Vx(σ) ≥ V 2

a3(σ) + 3
√
n. Continuing in this fashion, we obtain that

Vx(σ) ≥ V 2
aI (σ) + I

√
n ≥ V 2

aI (σ) + n ≥ n, which contradicts the assumption that Vx(σ) < Tλn(σ) ≤ n. This
completes the proof of Lemma 4. �

4.3. Large deviations. In this subsection we provide the proof to Theorem 1.

Proof of Theorem 1. It suffices to prove that P (Am+n) ≥ P (An) ·P (Am). We notice the following inclusion:

An+m =
{
Tλ(n+m) ≤ n+m, inf{Xk : 0 ≤ k ≤ Tλ(n+m)} ≥ 0

}
⊇ An ∩

{
Tλ(n+m) ≤ n+m, inf{Xk : 0 ≤ k ≤ Tλ(n+m)} ≥ 0

}
.

Let us define the walk X̂(ω) for ω ∈ An ∩ {Tλn ≤ n, inf{Xk : 0 ≤ k ≤ Tλn} ≥ 0} in the following way:

X̂k(ω) = Xk+Tλn(ω)−XTλn(ω). The walk X̂ starts at 0. In analogy to the stopping time Tx for the walk X

we define T̂x for the walk X̂. The precise definition is:

T̂x(ω) = TXTλn+x(ω)− Tλn(ω).

In analogy to An we define the event Âm for the walk X̂:

Âm =
{
T̂λm ≤ m, inf

{
X̂k : 0 ≤ k ≤ T̂λm

}
≥ 0
}
.

On the event An∩ Âm, by time Tλn+ T̂λm the walk X reaches the site XTλn + X̂T̂λm
≥ λ (n+m). Therefore

An ∩ Âm ⊆ An+m. We will now prove that P
(
An ∩ Âm

)
= P (An) · P

(
Âm

)
. For each x ∈ [λn, λn + L],

conditioned on XTλn = x, the events An and Âm are independent. Therefore

P
(
An ∩ Âm

)
=

∑
x∈[λn,λn+L]

P
(
An ∩ Âm

∣∣∣XTλn = x
)
· P (XTλn = x)

=
∑

x∈[λn,λn+L]

P (An|XTλn = x) · P
(
Âm

∣∣∣XTλn = x
)
· P (XTλn = x) .

Since P
(
Âm |XTλn = x

)
= P

(
Âm

)
we obtain

P
(
An ∩ Âm

)
= P

(
Âm

)
·

∑
x∈[λn,λn+L]

P (An|XTλn = x) · P (XTλn = x)

= P
(
Âm

)
· P (An) ,

which implies the inequality

P (An+m) ≥ P (An) · P (Am)
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for all n,m > 0. Fekete’s subadditive lemma (see [18]) implies the existence of the limit

φ(λ) = lim
n→∞

1

n
logP (An) .

The proof is completed using the inequalities (4) and (5) and Theorem 3. �

5. Case L = 2 or M = 1

In the case when L = 2 or the number of cookies per site is 0 we can obtain the exponential decay of
probabilities P (Xn ≥ λξ(n)) for every positive function ξ that satisfies ξ(n)+ξ(m) ≥ ξ(n+m). In particular
this holds for ξ(x) = xθ for θ ∈ (0, 1].

Theorem 4. Let ξ : R+ → R+ be a positive super-additive function and assume that either L = 2 or M = 1.
Then there is a function ϕ : R+ → R such that for every λ > 0 the following holds:

lim
n→∞

1

n
logP (Xn ≥ λξ(n)) = ϕ(λ).(11)

Proof. We will prove the theorem for the case L = 2. The proof when M = 1 is a simple generalization of
the proof from the case of deterministic walks in random environments in [11]. First of all, the following
inequalities are obtained in the same way as in the proof of Theorem 1:

lim inf
1

n
logP

(
Tλξ(n) ≤ n

)
≤ lim inf

1

n
logP (Xn ≥ λξ(n))(12)

lim sup
1

n
logP (Xn ≥ λξ(n)) ≤ lim sup

1

n
logP

(
Tλξ(n) ≤ n

)
.(13)

Let An := {Tλξ(n) ≤ n, infk≤Tλξ(n)
Xk ≥ 0}. We have P (An) ≤ P

(
Tλξ(n) ≤ n

)
. We will now prove that

P
(
Tλξ(n) ≤ n

)
≤ CP (An) for constant C independent of n.

Lemma 6. Suppose L ≤ 2. For each ω ∈ {Tλξ(n) ≤ n} there exists an ω′ ∈ An such that

ω′ ≺λξ(n),2 ω.

Proof. If L = 1, given ω ∈ {Tλξ(n) ≤ n} we can define ω′ such that ω′(j, 0) = +1 for every j ≥ 0, and
ω′(j, x) = ω(j, x) for every j ≥ 0 and x 6= 0. It is easy to check that ω′ ∈ An and ω′ ≺λξ(n),2 ω (in fact, ω′

agrees with ω everywhere except at 0).
Suppose now that L = 2, and assume that there is an element ω ∈ {Tλξ(n) ≤ n} for which the desired

ω′ ∈ An does not exist. Consider the set

G(ω) =
{
ω′ ∈ {Tλξ(n) ≤ n} : ω′ ≺λξ(n),2 ω

}
and an element σ ∈ G(ω) such that

Tλξ(n)(σ) = min
ω′∈G(ω)

Tλξ(n)(ω
′).

Let us define the following times:

α = sup{k < T(−∞,0)(σ) : Xk(σ) ≥ 0},
β = inf{k > α : Xk(σ) ≥ 0, Xk(σ) 6= Xα(σ)}.

Our assumption implies that σ 6∈ An hence α < +∞. Clearly, Xα ∈ {0, 1} and |Xβ −Xα| ≤ 2 since
L = 2. If Lα(σ,Xα) < M − 1, then we can apply Lemma 5 to a = Xα, b = Xβ , ta = α, and tb = β.
We obtain an environment σ′ ≺λξ(n),2 σ in which at least one visit to (−∞, 0) is avoided implying that
Tλξ(n)(σ

′) < Tλξ(n)(σ). Therefore Lα(σ,Xα) ≥M−1, which implies that {Xα, Xβ} = {0, 1}, since otherwise
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the walk could never move to the right of Xα after time α. Let σ′ be the environment obtained from σ in
the following way:

σ′(j, x) =

{
σ(j, x) for (j, x) 6= (M − 1, Xα)

Xβ −Xα for (j, x) = (M − 1, Xα).

Since every visit to (−∞, 0) in σ after time αmust start fromXα and end atXβ we conclude that σ′ ≺λξ(n),2 σ
and X[0,Tλξ(n)(σ′)] ∩ (−∞, 0) = ∅, which contradicts our minimality assumption on σ. This completes the
proof of Lemma 6. �

In the same way as in the proof of inequality (6) we now establish

P
(
Tλξ(n) ≤ n

)
≤ CP (An) .

An argument analogous to the one presented in the proof of Theorem 1 allows us to prove the existence of
the function ϕ such that

lim
n→∞

1

n
logP (An) = ϕ(λ).

The inequalities (12) and (13) allow us to conclude (11). �

6. Properties of the rate function

The next theorem states that the rate function φ from (1) is concave in λ.

Theorem 5. Assume that α, β > 0 are real numbers such that α + β = 1. Then for any λ, γ > 0 the
following inequality holds

(14) φ(αλ+ βγ) ≥ αφ(λ) + βφ(γ).

Moreover, φ(0) = 0, φ(λ) < 0 for λ > 0, and φ(λ) = −∞ for λ > L.

Proof. The equality φ(λ) = −∞ for λ > L is trivial because P (Xn > Ln) = 0. We will now prove the equality
φ(0) = 0. The event {Xn ≥ 0} contains the event {ω(j, 0) = 1 = −ω(j, 1) for all j ∈ {0, 1, 2, . . . ,M − 1}},
that is, the event that all cookies at 0 point to 1 and all cookies at 1 point back to 0. The probability of this
event is at least µ2M

min, hence P (Xn ≥ 0) ≥ µ2M
min. On the other hand, the complement of {Xn ≥ 0} contains

the event that the first cookie at 0 points to −1, all cookies at −1 point to −2 and all cookies at −2 point
back to −1. Thus, P (Xn ≥ 0) ≤ 1− µ2M+1

min , and we conclude that

0 = lim
n→∞

1

n
logµ2M

min ≤ lim
n→∞

1

n
logP (Xn ≥ 0) ≤ lim

n→∞

1

n
log
(
1− µ2M+1

min

)
= 0.

For the remainder of the proof, we assume that λ ∈ (0, L]. Let k =
⌊
λn
L

⌋
. We will prove that φ(λ) ∈

(−∞, 0) using Lemma 2. Let Ak = [−(k + 1)L, (k + 1)L] \ [−kL, kL]. Since {Xn ≥ λn} ⊆ {TAk < +∞} we
use Lemma 2 to conclude that P (Xn ≥ λn) ≤ ck for some constant c ∈ (0, 1) and all sufficiently large n. For

sufficiently large n we have that
⌊
λn
L

⌋
≥ nλ

2L hence P (Xn ≥ λn) ≤
(
c
λ
2L

)n
. This implies that

φ(λ) ≤ lim
n→∞

1

n
log
(
c
λ
2L

)n
< 0.

The finiteness of φ(λ) follows from the fact that {Tλn ≤ n} contains the event

G = {ω(0, 0) = ω(0, L) = ω(0, 2L) = · · · = ω(0, nL) = L} ,

which is the event that the top cookies at each of the sites 0, L, 2L, . . . , nL point to the location that is L
units to its right. The probability of the last event is at least µnmin hence φ(λ) ≥ logµmin.
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We will now demonstrate the concavity of φ. Assume that λ, γ ∈ (0, L] (otherwise concavity is trivial, as
the right hand side of (14) is −∞). Assume that (αn)∞n=1 and (βn)∞n=1 are sequences of rational numbers
for which nαn, nβn ∈ N, 0 ≤ α− αn ≤ 1

n , and 0 ≤ β − βn ≤ 1
n . Notice that{

T(αλ+βγ)n ≤ n, inf
0≤k≤T(αλ+βγ)n

Xk ≥ 0

}
⊇

{
T(αλ+βγ)n ≤ n, inf

0≤k≤T(αλ+βγ)n

Xk ≥ 0, Tαnλn ≤ αnn
}
.

Analogously as in the proof of Theorem 1 we define the process X̂ as

X̂k(ω) = Xk+Tαnλn
(ω)−XTαnλn

(ω).

Also, denote by T̂x the hitting time of the walk X̂, i.e. T̂x = TXTαnλn+x
− Tαnλn. We now obtain{

T(αλ+βγ)n ≤ n, inf
0≤k≤T(αλ+βγ)n

Xk ≥ 0, Tαnλn ≤ αnn
}

⊇
{
T(αλ+βγ)n ≤ n, inf

0≤k≤T(αλ+βγ)n

Xk ≥ 0, Tαnλn ≤ αnn,(15)

inf
0≤k≤Tαnλn

Xk ≥ 0, T̂βnγn ≤ βnn, inf
0≤k≤T̂βnγn

X̂k ≥ 0

}
.

Let us denote by X̃ the walk defined as X̃k = X̂k+T̂βnγn
− X̂T̂βnγn

, and by T̃x the stopping time T̃x =

T̂X̂T̂βnγn
+x − T̂βnγn. Now we can conclude from the inclusion (15) that{

T(αλ+βγ)n ≤ n, inf
0≤k≤T(αλ+βγ)n

Xk ≥ 0, Tαnλn ≤ αnn
}

⊇
{
T(αλ+βγ)n ≤ n, inf

0≤k≤T(αλ+βγ)n

Xk ≥ 0, Tαnλn ≤ αnn,

inf
0≤k≤Tαnλn

Xk ≥ 0, T̂βnγn ≤ βnn, inf
0≤k≤T̂βnγn

X̂k ≥ 0,

T̃(αλ+βγ−αnλ−βnγ)n ≤ (1− αn − βn)n, inf
0≤k≤T̃(αλ+βγ−αnλ−βnγ)n

X̃k ≥ 0

}

=

{
Tαnλn ≤ αnn, inf

0≤k≤Tαnλn
Xk ≥ 0, T̂βnγn ≤ βnn, inf

0≤k≤T̂βnγn
X̂k ≥ 0,

T̃(αλ+βγ−αnλ−βnγ)n ≤ (1− αn − βn)n, inf
0≤k≤T̃(αλ+βγ−αnλ−βnγ)n

X̃k ≥ 0

}
.

From our choice of sequences (αn)∞n=1 and (βn)∞n=1 we derive the following two inequalities

(αλ+ βγ − αnλ− βnγ)n ≤ L (α+ β − αn − βn)n, and

(1− αn − βn)n ≤ 2.

Observe that (1− αn − βn)n ∈ {0, 1, 2}. In each of the three cases we have

P

(
T̃(αλ+βγ−αnλ−βnγ)n ≤ (1− αn − βn)n, inf

0≤k≤T̃(αλ+βγ−αnλ−βnγ)n

X̃k ≥ 0

)
≥ µ2

min.
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Since the walks X, X̂ and X̃ occupy disjoint parts of the environment (on the events that there are no
backtrackings to the left of 0), by independence we obtain

P
(
T(αλ+βγ)n ≤ n, inf

0≤k≤T(αλ+βγ)n

Xk ≥ 0

)
≥ P

(
Tαnλn ≤ αnn, inf

0≤k≤Tαnλn
Xk ≥ 0

)
× P

(
T̂βnγn ≤ βnn, inf

0≤k≤T̂βnγn
X̂k ≥ 0

)
µ2
min.

Taking logarithms of both sides of the last inequality, dividing by n, and taking the limit as n → ∞ we
conclude

φ(αλ+ βγ) ≥ lim
n→∞

1

n
log
(
µ2
min

)
(16)

+ lim
n→∞

1

n
logP

(
Tαnλn ≤ αnn, inf

0≤k≤Tαnλn
Xk ≥ 0

)
+ lim
n→∞

1

n
logP

(
T̂βnγn ≤ βnn, inf

0≤k≤T̂βnγn
X̂k ≥ 0

)
.

The first limit on the right-hand side of the last inequality is equal to 0. For the second limit we use that
αnn is a positive integer, hence

lim
n→∞

1

n
logP

(
Tαnλn ≤ αnn, inf

0≤k≤Tαnλn
Xk ≥ 0

)
= lim

n→∞

αn
αnn

logP
(
Tαnλn ≤ αnn, inf

0≤k≤Tαnλn
Xk ≥ 0

)
= lim

n→∞
αn · lim

n→∞

1

αnn
logP

(
Tαnλn ≤ αnn, inf

0≤k≤Tαnλn
Xk ≥ 0

)
= αφ(λ).

Similarly we obtain that the last term on the right-hand side of (16) is equal to βφ(γ) which completes the
proof of the concavity. �

In a similar way we can prove that the function ϕ from (11) is concave in λ.

Theorem 6. Assume that α, β > 0 are real numbers such that α + β = 1. Then for any λ, γ > 0 the
following inequality holds

ϕ(αλ+ βγ) ≥ αϕ(λ) + βϕ(γ).

Moreover, ϕ(0) = 0, and if the function ξ(n) from (11) is the identity map ξ(n) ≡ n, then ϕ(λ) < 0 for
λ > 0 and ϕ(λ) = −∞ for λ > L.

Proof. The same argument used in proving Theorem 5 can be used to prove that ϕ(0) = 0. Also, if ξ(n) ≡ n
in an analogous way we can prove that ϕ(λ) = −∞ for λ > L and ϕ(λ) ∈ (−∞, 0) for λ ∈ (0, L). The idea
of the proof is very similar to the one used for Theorem 5. We start by fixing two sequences of rational
numbers (αn)∞n=1 and (βn)∞n=1 for which nαn, nβn ∈ N, 0 ≤ α − αn ≤ 1

n , and 0 ≤ β − βn ≤ 1
n . Starting

from the inclusion {
T(αλ+βγ)ξ(n) ≤ n, inf

0≤k≤T(αλ+βγ)ξ(n)

Xk ≥ 0

}
⊇

{
T(αλ+βγ)ξ(n) ≤ n, inf

0≤k≤T(αλ+βγ)ξ(n)

Xk ≥ 0, Tαnλξ(n) ≤ αnn
}
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and using the same reasoning that established the inequality (16) we obtain

ϕ(αλ+ βγ) ≥ lim
n→∞

1

n
log
(
µ2
min

)
(17)

+ lim
n→∞

1

n
logP

(
Tαnλξ(n) ≤ αnn, inf

0≤k≤Tαnλξ(n)

Xk ≥ 0

)
+ lim
n→∞

1

n
logP

(
T̂βnγξ(n) ≤ βnn, inf

0≤k≤T̂βnγξ(n)

X̂k ≥ 0

)
.

It suffices to prove that the second limit from the right-hand side is greater than or equal to αϕ(λ). The
number αnn is a positive integer and since αn < 1 the following inequality holds αnξ(n) ≤ ξ(αnn). Therefore

lim
n→∞

1

n
logP

(
Tαnλξ(n) ≤ αnn, inf

0≤k≤Tαnλξ(n)

Xk ≥ 0

)
≥ lim

n→∞

1

n
logP

(
Tλξ(αnn) ≤ αnn, inf

0≤k≤Tλξ(αnn)

Xk ≥ 0

)
= lim

n→∞

αn
αnn

logP
(
Tλξ(αnn) ≤ αnn, inf

0≤k≤Tλξ(αnn)

Xk ≥ 0

)
= lim

n→∞
αn · lim

n→∞

1

αnn
logP

(
Tλξ(αnn) ≤ αnn, inf

0≤k≤Tλξ(αnn)

Xk ≥ 0

)
= αϕ(λ).

Similarly we obtain that the last term on the right-hand side of (17) is greater than or equal to βϕ(γ) which
completes the proof of the concavity. �

For functions ξ(n) that are not the identity map we cannot guarantee that ϕ(λ) < 0. We believe this not
to be true, but we do not have a proof of this.

7. Open problems

We believe that the main result, Theorem 1, holds in higher dimensions. Our proof for EDWRE differs
from the proof of the analogous result for DWRE in that it requires Lemma 4, and our proof for this lemma
relied heavily on the dimension being d = 1.

Conjecture 1. Theorem 1 holds when d ≥ 2.

Our proof of Lemma 4 required that M ≥ 3 to guarantee the existence of the increasing sequence (ak)Ik=1

in Z that the walk cannot cover in time n. We believe that this technical condition can be removed, but we
were only able to do so in the case L = 2.

Conjecture 2. Theorem 1 holds for all M ≥ 1.

Our next question is related to the excursions that are well understood in the case of ERW [10]. Recall
that V 1

0 is the time of the first visit to 0. Since the walk starts at 0 we have that V 1
0 = 0.

Question 1. Let A = {V 2
0 < +∞}. What is the conditional expectation E[V 2

0 |A]? How does it depend on
M?

The sequence Xn eventually gets trapped in a loop. We do not know much about the time when the
walk enters the trapping loop, nor the asymptotic size of the trapping loop. It is expected that the time of
entering the trapping loop depends on the number of cookies M , but it is unclear whether the size of the
trapping loop does, too.
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We can define the time of the entrance to the loop in the following way:

Z(ω) = inf {n : ∃k ≤ n,Xk = Xn,∀j ∈ {k, k + 1, . . . , n}Lj(ω,Xj) ≥M − 1} .

Question 2. What can be said about the distribution of Z and its dependence on M? What is the length of
the loop in which the walk gets stuck? Does it depend on M?

Acknowledgments. We are grateful to Michael Damron for fruitful discussions about the proof of our
main theorem.
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