1-st International Mathematical Olympiad

Bucharest - Brasov, Romania, July 23-31, 1959

First Day

- 1. For every integer *n* prove that the fraction $\frac{21n+4}{14n+3}$ cannot be reduced any further. (*Poland*)
- 2. For which real numbers *x* do the following equations hold:

(a)
$$\sqrt{x+\sqrt{2x-1}} + \sqrt{x+\sqrt{2x-1}} = \sqrt{2}$$
,
(b) $\sqrt{x+\sqrt{2x-1}} + \sqrt{x+\sqrt{2x-1}} = 1$,
(c) $\sqrt{x+\sqrt{2x-1}} + \sqrt{x+\sqrt{2x-1}} = 2$? (*Romania*)

3. Let *x* be an angle and let the real numbers *a*, *b*, *c*, cos *x* satisfy the following equation:

$$a\cos^2 x + b\cos x + c = 0$$
.

Write the analogous quadratic equation for a, b, c, $\cos 2x$. Compare the given and the obtained equality for a = 4, b = 2, c = -1. (Hungary)

Second Day

- 4. Construct a right-angled triangle whose hypotenuse *c* is given if it is known that the median from the right angle equals the geometric mean of the remaining two sides of the triangle.

 (Hungary)
- 5. A segment *AB* is given and on it a point *M*. On the same side of *AB* squares *AMCD* and *BMFE* are constructed. The circumcircles of the two squares, whose centers are *P* and *Q*, intersect in *M* and another point *N*.
 - (a) Prove that lines FA and BC intersect at N.
 - (b) Prove that all such constructed lines MN pass through the same point S, regardless of the selection of M.
 - (c) Find the locus of the midpoints of all segments PQ, as M varies along the segment AB. (Romania)
- 6. Let α and β be two planes intersecting at a line p. In α a point A is given and in β a point C is given, neither of which lies on p. Construct B in α and D in β such that ABCD is an equilateral trapezoid, $AB \parallel CD$, in which a circle can be inscribed. (*Czechoslovakia*)

