2-nd International Mathematical Olympiad

Bucharest - Sinaia, Romania, July 18-25, 1960

First Day

1. Find all the three-digit numbers for which one obtains, when dividing the number by 11, the sum of the squares of the digits of the initial number.

(Bulgaria)

2. For which real numbers *x* does the following inequality hold:

$$\frac{4x^2}{(1-\sqrt{1+2x})^2} < 2x+9? (Hungary)$$

3. A right-angled triangle ABC is given for which the hypotenuse BC has length a and is divided into n equal segments, where n is odd. Let α be the angle with which the point A sees the segment containing the middle of the hypotenuse. If h denotes the height of the triangle, prove that

$$\tan \alpha = \frac{4nh}{(n^2 - 1)a}$$
 (Romania)

Second Day

- 4. Construct a triangle ABC whose lengths of heights h_a and h_b (from A and B, respectively) and length of median m_a (from A) are given.

 (Hungary)
- 5. A cube ABCDA'B'C'D' is given.
 - (a) Find the locus of all midpoints of segments XY, where X is any point on segment AC and Y any point on segment B'D'.
 - (b) Find the locus of all points Z on segments XY such that $\overrightarrow{ZY} = 2\overrightarrow{XZ}$. (*Czechoslovakia*)
- 6. An isosceles trapezoid with bases a and b and height h is given.
 - (a) On the line of symmetry construct the point P such that both (nonbase) sides are seen from P with an angle of 90° .
 - (b) Find the distance of *P* from one of the bases of the trapezoid.
 - (c) Under what conditions for a, b, and h can the trapezoid be constructed (analyze all possible cases)? (Bulgaria)
- 7. A regular cone is given and inscribed in a sphere. Around the sphere a cylinder is circumscribed so that its base is in the same plane as the base of the cone. Let V₁ be the volume of the cone and V₂ that of the cylinder.
 - (a) Prove that $V_1 = V_2$ is impossible.
 - (b) Find the smallest k for which $V_1 = kV_2$, and in this case construct the angle at the vertex of the cone. (DR Germany)

