3-rd International Mathematical Olympiad

Budapest – Veszprem, Hungary, July 6–16, 1961

First Day

1. Solve the following system of equations:

$$x+y+z = a,$$

$$x^2+y^2+z^2 = b^2,$$

$$xy = z^2,$$

where a and b are given real numbers. What conditions must hold on a and b for the solutions to be positive and distinct? (Hungary)

2. Let a, b, and c be the lengths of a triangle whose area is S. Prove that

$$a^2 + b^2 + c^2 \ge 4S\sqrt{3}$$
.

In what case does equality hold?

(Poland)

3. Solve the equation $\cos^n x - \sin^n x = 1$, where n is a given positive integral aria

Second Day

- 4. In the interior of $\triangle P_1 P_2 P_3$ a point P is given. Let Q_1 , Q_2 , and Q_3 respectively be the intersections of PP_1 , PP_2 , and PP_3 with the opposing edges of $\triangle P_1 P_2 P_3$. Prove that among the ratios PP_1/PQ_1 , PP_2/PQ_2 , and PP_3/PQ_3 there exists at least one not larger than 2 and at least one not smaller than 2. (DR Germany)
- 5. Construct a triangle *ABC* if the following elements are given: AC = b, AB = c, and $\angle AMB = \omega$ ($\omega < 90^{\circ}$), where *M* is the midpoint of *BC*. Prove that the construction has a solution if and only if

$$b \tan \frac{\omega}{2} \le c < b .$$

In what case does equality hold?

(Czechoslovakia)

6. A plane ε is given and on one side of the plane three noncollinear points A, B, and C such that the plane determined by them is not parallel to ε . Three arbitrary points A', B', and C' in ε are selected. Let L, M, and N be the midpoints of AA', BB', and CC', and C the centroid of $\triangle LMN$. Find the locus of all points obtained for C as C are varied (independently of each other) across(C are varied).

