11-th International Mathematical Olympiad

Bucharest, Romania, July 5-20, 1969

1. Prove that there exist infinitely many natural numbers a with the following property: the number $z = n^4 + a$ is not prime for any natural number n.

(DR Germany)

2. Let a_1, a_2, \dots, a_n be real constants and

$$y(x) = \cos(a_1 + x) + \frac{\cos(a_2 + x)}{2} + \frac{\cos(a_3 + x)}{2^2} + \dots + \frac{\cos(a_n + x)}{2^{n-1}}.$$

If x_1, x_2 are real and $y(x_1) = y(x_2) = 0$, prove that $x_1 - x_2 = m\pi$ for some integer m. (Hungary)

3. Find conditions on the positive real number a such that there exists a tetrahedron k of whose edges (k = 1, 2, 3, 4, 5) have length a, and the other 6 - k edges have length 1. (*Poland*)

- 4. Let AB be a diameter of a circle γ . A point C different from A and B is on the circle γ . Let D be the projection of the point C onto the line AB. Consider three other circles γ_1 , γ_2 , and γ_3 with the common tangent AB: γ_1 inscribed in the triangle ABC, and γ_2 and γ_3 tangent to both (the segment) CD and γ . Prove that γ_1 , γ_2 , and γ_3 have two common tangents. (*Netherlands*)
- 5. Given n points in the plane such that no three of them are collinear, prove that one can find at least $\binom{n-3}{2}$ convex quadrilaterals with their vertices at these points. (Mongolia)
- 6. Under the conditions $x_1, x_2 > 0$, $x_1y_1 > z_1^2$, and $x_2y_2 > z_2^2$, prove the inequality

$$\frac{8}{(x_1+x_2)(y_1+y_2)-(z_1+z_2)^2} \le \frac{1}{x_1y_1-z_1^2} + \frac{1}{x_2y_2-z_2^2}.$$
(Soviet Union)

