18-th International Mathematical Olympiad

Wienna – Linz, Austria, 1976

- 1. In a convex quadrangle with area 32 cm², the sum of the lengths of two nonadjacent edges and of the length of one diagonal is equal to 16 cm. What is the length of the other diagonal? (*Czechoslovakia*)
- 2. Let $P_1(x) = x^2 2$, $P_j(x) = P_1(P_{j-1}(x))$, j = 2, 3, Show that for arbitrary n, the roots of the equation $P_n(x) = x$ are real and different.

(Finland)

3. A rectangular box can be filled completely with unit cubes. If one places cubes with volume 2 in the box such that their edges are parallel to the edges of the box, one can fill exactly 40% of the box. Determine all possible (interior) sizes of the box.

(Netherlands)

- 4. Find the largest number obtainable as the product of positive integers whose sum is 1976. (*United States of America*)
- 5. Let a set of p equations be given,

$$a_{11}x_1 + \dots + a_{1q}x_q = 0,$$

 $a_{21}x_1 + \dots + a_{2q}x_q = 0,$
 \vdots
 $a_{p1}x_1 + \dots + a_{pq}x_q = 0,$

with coefficients a_{ij} satisfying $a_{ij} = -1$, 0, or +1 for all i = 1, ..., p and j = 1, ..., q. Prove that if q = 2p, there exists a solution $x_1, ..., x_q$ of this system such that all x_j (j = 1, ..., q) are integers satisfying $|x_j| \le q$ and $x_j \ne 0$ for at least one value of j.

(Netherlands)

6. For all positive integral n, $u_{n+1} = u_n(u_{n-1}^2 - 2) - u_1$, $u_0 = 2$, and $u_1 = 2\frac{1}{2}$. Prove that

$$3\log_2[u_n] = 2^n - (-1)^n$$

where [x] is the integral part of x.

(Great Britain)

