37-th International Mathematical Olympiad

Mumbai, India, July 5-17, 1996

- 1. We are given a positive integer r and a rectangular board ABCD with dimensions |AB|=20, |BC|=12. The rectangle is divided into a grid of 20×12 unit squares. The following moves are permitted on the board: One can move from one square to another only if the distance between the centers of the two squares is \sqrt{r} . The task is to find a sequence of moves leading from the square corresponding to vertex A to the square corresponding to vertex B.
 - (a) Show that the task cannot be done if r is divisible by 2 or 3.
 - (b) Prove that the task is possible when r = 73.
 - (c) Is there a solution when r = 97?

(Finland)

2. Let *P* be a point inside $\triangle ABC$ such that

$$\angle APB - \angle C = \angle APC - \angle B$$
.

Let D, E be the incenters of $\triangle APB, \triangle APC$ respectively. Show that AP, BD, and CE meet in a point. (*Canada*)

3. Let \mathbb{N}_0 denote the set of nonnegative integers. Find all functions f from \mathbb{N}_0 into itself such that

$$f(m+f(n)) = f(f(m)) + f(n), \quad \forall m, n \in \mathbb{N}_0.$$
 (Romania)

- 4. The positive integers a and b are such that the numbers 15a + 16b and 16a 15b are both squares of positive integers. What is the least possible value that can be taken on by the smaller of these two squares? (Russia)
- 5. Let ABCDEF be a convex hexagon such that AB is parallel to DE, BC is parallel to EF, and CD is parallel to AF. Let R_A, R_C, R_E be the circumradii of triangles FAB, BCD, DEF respectively, and let P denote the perimeter of the hexagon. Prove that

$$R_A + R_C + R_E \ge \frac{P}{2}.$$
 (Armenia)

- 6. Let p,q,n be three positive integers with p+q < n. Let (x_0,x_1,\ldots,x_n) be an (n+1)-tuple of integers satisfying the following conditions:
 - (i) $x_0 = x_n = 0$.
 - (ii) For each i with $1 \le i \le n$, either $x_i x_{i-1} = p$ or $x_i x_{i-1} = -q$.

Show that there exists a pair (i, j) of distinct indices with $(i, j) \neq (0, n)$ such that $x_i = x_j$. (France)

1