38-th International Mathematical Olympiad

Mar del Plata, Argentina, July 18-31, 1997

- 1. An infinite square grid is colored in the chessboard pattern. For any pair of positive integers m,n consider a right-angled triangle whose vertices are grid points and whose legs, of lengths m and n, run along the lines of the grid. Let S_b be the total area of the black part of the triangle and S_w the total area of its white part. Define the function $f(m,n) = |S_b S_w|$.
 - (a) Calculate f(m,n) for all m,n that have the same parity.
 - (b) Prove that $f(m,n) \le \frac{1}{2} \max(m,n)$.
 - (c) Show that f(m,n) is not bounded from above. (Belarus)
- 2. In triangle ABC the angle at A is the smallest. A line through A meets the circumcircle again at the point U lying on the arc BC opposite to A. The perpendicular bisectors of CA and AB meet AU at V and W, respectively, and the lines CV, BW meet at T. Show that AU = TB + TC. (Great Britain)
- 3. Let $x_1, x_2, ..., x_n$ be real numbers satisfying the conditions $|x_1 + x_2 + ... + x_n| = 1$ and $|x_i| \le \frac{n+1}{2}$ for i = 1, 2, ..., n. Show that there exists a permutation $y_1, ..., y_n$ of the sequence $x_1, ..., x_n$ such that

$$|y_1 + 2y_2 + \dots + ny_n| \le \frac{n+1}{2}.$$
 (Russia)

- 4. An $n \times n$ matrix with entries from $\{1, 2, \dots, 2n-1\}$ is called a *silver matrix* if for each i the union of the ith row and the ith column contains 2n-1 distinct entries. Show that:
 - (a) There exist no silver matrices for n = 1997.
 - (b) Silver matrices exist for infinitely many values of n. (Iran)
- 5. Find all pairs of integers $x, y \ge 1$ satisfying the equation $x^{y^2} = y^x$. (*Czech Republic*)
- 6. For a positive integer n, let f(n) denote the number of ways to represent n as the sum of powers of 2 with nonnegative integer exponents. Representations that differ only in the ordering in their summands are not considered to be distinct. (For instance, f(4) = 4 because the number 4 can be represented in the following four ways: 4; 2+2; 2+1+1; 1+1+1+1.) Prove the inequality

$$2^{n^2/4} < f(2^n) < 2^{n^2/2}$$
 for all $n \ge 3$. (Lithuania)

1