42-nd International Mathematical Olympiad Washington DC, United States of America, July 1–14, 2001

- 1. In acute triangle ABC with circumcenter O and altitude AP, $\angle C \ge \angle B + 30^\circ$.

 Prove that $\angle A + \angle COP < 90^\circ$.

 (South Korea)
- 2. Prove that for all positive real numbers a, b, c,

$$\frac{a}{\sqrt{a^2 + 8bc}} + \frac{a}{\sqrt{b^2 + 8ca}} + \frac{c}{\sqrt{c^2 + 8ab}} \ge 1.$$
 (South Korea)

- Twenty-one girls and twenty-one boys took part in a mathematical competition. It turned out that
 - (i) each contestant solved at most six problems, and
 - (ii) for each pair of a girl and a boy, there was at least one problem that was solved by both the girl and the boy.

Show that there is a problem that was solved by at least three girls and at least three boys. (Germany)

- 4. Let n be an odd integer greater than 1 and let c_1, c_2, \ldots, c_n be integers. For each permutation $a = (a_1, a_2, \ldots, a_n)$ of $\{1, 2, \ldots, n\}$, define $S(a) = \sum_{i=1}^n c_i a_i$. Prove that there exist permutations $a \neq b$ of $\{1, 2, \ldots, n\}$ such that n! is a divisor of S(a) S(b).
- 5. Let ABC be a triangle with $\angle BAC = 60^{\circ}$. Let AP bisect $\angle BAC$ and let BQ bisect $\angle ABC$, with P on BC and Q on AC. If AB + BP = AQ + QB, what are the angles of the triangle? (Israel)
- 6. Let a > b > c > d be positive integers and suppose

$$ac + bd = (b+d+a-c)(b+d-a+c).$$

Prove that ab + cd is not prime.

(Bulgaria)

