45-th International Mathematical Olympiad

Athens, Greece, July 7-19, 2004

1. Let ABC be an acute-angled triangle with $AB \neq AC$. The circle with diameter BC intersects the sides AB and AC at M and N, respectively. Denote by O the midpoint of BC. The bisectors of the angles BAC and MON intersect at R. Prove that the circumcircles of the triangles BMR and CNR have a common point lying on the line segment BC.

(Romania)

2. Find all polynomials P(x) with real coefficients that satisfy the equality

$$P(a-b) + P(b-c) + P(c-a) = 2P(a+b+c)$$

for all triples a, b, c of real numbers such that ab + bc + ca = 0.

(South Korea)

3. Determine all $m \times n$ rectangles that can be covered with *hooks* made up of 6 unit squares, as in the figure:

Rotations and reflections of hooks are allowed. The rectangle must be covered without gaps and overlaps. No part of a hook may cover area outside the rectangle. (Estonia)

4. Let $n \ge 3$ be an integer and t_1, t_2, \dots, t_n positive real numbers such that

$$n^2 + 1 > (t_1 + t_2 + \dots + t_n) \left(\frac{1}{t_1} + \frac{1}{t_2} + \dots + \frac{1}{t_n} \right).$$

Show that t_i, t_j, t_k are the side lengths of a triangle for all i, j, k with $1 \le i < j < k \le n$. (South Korea)

5. In a convex quadrilateral *ABCD* the diagonal *BD* does not bisect the angles *ABC* and *CDA*. The point *P* lies inside *ABCD* and satisfies

$$\angle PBC = \angle DBA$$
 and $\angle PDC = \angle BDA$.

Prove that ABCD is a cyclic quadrilateral if and only if AP = CP.

(Poland)

6. We call a positive integer *alternate* if its decimal digits are alternately odd and even. Find all positive integers n such that n has an alternate multiple. (*Iran*)

1