46-th International Mathematical Olympiad Mérida, Mexico, July 8–19, 2005

First Day – July 13

- 1. Six points are chosen on the sides of an equilateral triangle ABC: A_1,A_2 on BC; B_1,B_2 on CA; C_1,C_2 on AB. These points are vertices of a convex hexagon $A_1A_2B_1B_2C_1C_2$ with equal side lengths. Prove that the lines A_1B_2 , B_1C_2 and C_1A_2 are concurrent. (Romania)
- 2. Let $a_1, a_2,...$ be a sequence of integers with infinitely many positive terms and infinitely many negative terms. Suppose that for each positive integer n, the numbers $a_1, a_2,..., a_n$ leave n different remainders on division by n. Prove that each integer occurs exactly once in the sequence.

(Netherlands)

3. Let x, y and z be positive real numbers such that $xyz \ge 1$. Prove that

$$\frac{x^5 - x^2}{x^5 + y^2 + z^2} + \frac{y^5 - y^2}{y^5 + z^2 + x^2} + \frac{z^5 - z^2}{z^5 + x^2 + y^2} \ge 0.$$
 (South Korea)

Second Day - July 14

4. Consider the sequence a_1, a_2, \ldots defined by

$$a_n = 2^n + 3^n + 6^n - 1$$
 $(n = 1, 2, ...).$

Determine all positive integers that are relatively prime to every term of the sequence. (Poland)

5. Let *ABCD* be a given convex quadrilateral with sides *BC* and *AD* equal in length and not parallel. Let *E* and *F* be interior points of the sides *BC* and *AD* respectively such that *BE* = *DF*. The lines *AC* and *BD* meet at *P*, the lines *BD* and *EF* meet at *Q*, the lines *EF* and *AC* meet at *R*. Consider all the triangles *PQR* as *E* and *F* vary. Show that the circumcircles of these triangles have a common point other than *P*.

(Poland)

6. In a mathematical competition 6 problems were posed to the contestants. Each pair of problems was solved by more than 2/5 of the contestants. Nobody solved all 6 problems. Show that there were at least 2 contestants who each solved exactly 5 problems. (Romania)

