50-th International Mathematical Olympiad

Bremen, Germany, July 10-22, 2009

- 1. Let n be a positive integer and let a_1, \ldots, a_k ($k \ge 2$) be distinct integers in the set $\{1, \ldots, n\}$ such that n divides $a_i(a_{i+1}-1)$ for $i=1,\ldots,k-1$. Prove that n does not divide $a_k(a_1-1)$.
- 2. Let ABC be a triangle with circumcenter O. The points P and Q are interior points of the sides CA and AB, respectively. Let K, L and M be the midpoints of the segments BP, CQ, and PQ, respectively, and let Γ be the circle passing through K, L, and M. Suppose that the line PQ is tangent to the circle Γ . Prove that OP = OQ.
- 3. Suppose that s_1, s_2, s_3, \ldots is a strictly increasing sequence of positive integers such that the subsequences

$$s_{s_1}, s_{s_2}, s_{s_3}, \dots$$
 and $s_{s_1+1}, s_{s_2+1}, s_{s_3+1}, \dots$

are both arithmetic progressions. Prove that the sequence $s_1, s_2, s_3, ...$ is itself an arithmetic progression.

- 4. Let ABC be a triangle with AB = AC. The angle bisectors of $\angle CAB$ and $\angle ABC$ meet the sides BC and CA at D and E, respectively. Let K be the incenter of triangle ADC. Suppose that $\angle BEK = 45^{\circ}$. Find all possible values of $\angle CAB$.
- 5. Determine all functions *f* from the set of positive integers to the set of positive integers such that, for all positive integers *a* and *b*, there exists a non-degenerate triangle with sides of lengths

$$a, f(b)$$
 and $f(b+f(a)-1)$.

(A triangle is non-degenerate if its vertices are not collinear.)

6. Let $a_1, a_2, ..., a_n$ be distinct positive integers and let M be a set of n-1 positive integers not containing $s = a_1 + a_2 + \cdots + a_n$. A grasshopper is to jump along the real axis, starting at the point 0 and making n jumps to the right with lengths $a_1, a_2, ..., a_n$ in some order. Prove that the order can be chosen in such a way that the grasshopper never lands on any point in M.

