4-th Turkish Mathematical Olympiad 1996/97

Second Round

First Day – December 6, 1996

1. Let $(A_n)_{n=1}^{\infty}$ and $(a_n)_{n=1}^{\infty}$ be sequences of positive integers. Assume that for each positive integer *x*, there is a unique positive integer *N* and a unique *N*-tuple (x_1, x_2, \ldots, x_N) such that

$$0 \le x_k \le a_k$$
 for $k = 1, 2, ..., N$, $x_N \ne 0$, and $x = \sum_{k=1}^N x_k A_k$.

- (a) Prove that $A_k = 1$ for some k;
- (b) Prove that $A_k = A_j$ if and only if k = j;
- (c) Prove that if $A_k \leq A_j$, then $A_k \mid A_j$.
- 2. Let *ABCD* be a square of side length 2, and let *M* and *N* be points on the sides *AB* and *CD* respectively. The lines *CM* and *BN* meet at *P*, while the lines *AN* and *DM* meet at *Q*. Prove that $PQ \ge 1$.
- 3. Let *n* integers on the real axis be colored. Determine for which positive integers *k* there exists a family \mathcal{K} of closed intervals with the following properties:
 - (i) The union of the intervals in \mathscr{K} contains all the colored points;
 - (ii) Any two distinct intervals in \mathcal{K} are disjoint;
 - (iii) For each interval *I* in \mathscr{K} we have $a_I = kb_I$, where a_I denotes the number of integers in *I*, and b_I the number of colored integers in *I*.

Second Day – December 7, 1996

- 4. A circle is tangent to the sides AD, DC, CB of a convex quadrilateral ABCD at K, L, M, respectively. A line *l*, passing through *L* and parallel to AD, meets *KM* at *N* and *KC* at *P*. Prove that PL = PN.
- 5. Prove that $\prod_{k=0}^{n-1} (2^n 2^k)$ is divisible by *n*! for all positive integers *n*.
- 6. Show that there is no function $f : \mathbb{R}^+ \to \mathbb{R}^+$ such that

$$f(x+y) > f(x)(1+yf(x))$$
 for all $x, y > 0$.

1

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com